Previous |  Up |  Next

Article

Title: Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces (English)
Author: Şerb, Ioan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 1
Year: 1999
Pages: 107-119
.
Category: math
.
Summary: Some characterizations of inner product spaces in terms of Birkhoff orthogonality are given. In this connection we define the rectangular modulus $\mu_{_X}$ of the normed space $X$. The values of the rectangular modulus at some noteworthy points are well-known constants of $X$. Characterizations (involving $\mu_{_X})$ of inner product spaces of dimension $\geq 2$, respectively $\geq 3$, are given and the behaviour of $\mu_{_X}$ is studied. (English)
Keyword: characterizations of inner product spaces
Keyword: orthogonality
Keyword: moduli of Banach spaces
MSC: 46B04
MSC: 46B20
MSC: 46C15
idZBL: Zbl 1060.46506
idMR: MR1715205
.
Date available: 2009-01-08T18:50:07Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119066
.
Reference: [1] Alonso J.: Ortogonalidad en espacios normados.Ph.D. Thesis, Universidad de Extremadura, 1984. MR 0823479
Reference: [2] Alonso J., Benitez C.: Some characteristic and non-characteristic properties of inner product spaces.J. Approx. Theory 55 (1988), 318-325. Zbl 0675.41047, MR 0968938
Reference: [3] Amir D.: Characterizations of Inner Product Spaces.Birkhauser Verlag, Basel-Boston-Stuttgart, 1986. Zbl 0617.46030, MR 0897527
Reference: [4] Baronti M.: Su alcune parametri degli spazi normati.Boll. Un. Mat. Ital. 5 (18)-B (1981), 1065-1085.
Reference: [5] Baronti M., Papini L.: Projections, skewness and related constants in real normed spaces.Math. Pannon. 3 (1992), 31-47. Zbl 0763.46008, MR 1170536
Reference: [6] Benitez C., Przeslawski K., Yost D.: A universal modulus for normed spaces.Studia Math. 127 1 (1998), 21-46. Zbl 0909.46008, MR 1488142
Reference: [7] Day M.M.: Uniform convexity in factor and conjugate spaces Ann. of Math. (2).45 (1944), 375-385. MR 0010779
Reference: [8] Desbiens J.: Constante rectangle et bias d'un espace de Banach.Bull. Austral. Math. Soc. 42 (1990), 465-482. MR 1083283
Reference: [9] Desbiens J.: Sur les constantes de Thele et de Schäffer.Ann. Sci. Math. Québec 16 (2) (1992), 129-141. Zbl 0788.46018, MR 1199184
Reference: [10] Franchetti C.: On the radial projection in Banach spaces.in Approximation Theory III (ed. by E.W. Cheney), pp.425-428, Academic Press, New York, 1980. Zbl 0483.46012, MR 0602747
Reference: [11] James R.C.: Orthogonality and linear functionals in normed linear spaces.Trans. Amer. Math. Soc. 61 (1947), 265-292. Zbl 0037.08001, MR 0021241
Reference: [12] Joly J.L.: Caracterizations d'espaces hilbertiens au moyen de la constante rectangle.J. Approx. Theory 2 (1969), 301-311. MR 0270126
Reference: [13] Lindenstrauss J.: On the modulus of smoothness and divergent series in Banach spaces.Michigan Math. J. 10 (1963), 241-252. Zbl 0115.10001, MR 0169061
Reference: [14] Nordlander G.: The modulus of convexity in normed linear spaces.Ark. Mat. 4 (1960), 15-17. Zbl 0092.11402, MR 0140915
Reference: [15] del Rio M., Benitez C.: The rectangular constant for two-dimensional spaces.J. Approx. Theory 19 (1977), 15-21. Zbl 0343.46018, MR 0448039
Reference: [16] Şerb I.: On the behaviour of the tangential modulus of a Banach space I.Revue d'Analyse Numérique et de Théorie de l'Approximation 24 (1995), 241-248. MR 1608428
Reference: [17] Şerb I.: On the behaviour of the tangential modulus of a Banach space II.Mathematica (Cluj) 38 (61) (1996), 199-207. MR 1606805
Reference: [18] Şerb I.: A Day-Nordlander theorem for the tangential modulus of a normed space.J. Math. Anal. Appl. 209 (1997), 381-391. MR 1474615
Reference: [19] Smith M.A.: On the norms of metric projections.J. Approx. Theory 31 (1981), 224-229. Zbl 0477.46022, MR 0624010
Reference: [20] Thele R.L.: Some results on the radial projection in Banach spaces.Proc. Amer. Math. Soc. 42 (1974), 2 483-486. Zbl 0276.46015, MR 0328550
Reference: [21] Ullán de Celis A.: Modulos de convexidad y lisura en espacios normados.Ph.D. Thesis, Universidad de Extremadura, 1991. MR 1174971
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-1_8.pdf 238.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo