Previous |  Up |  Next

Article

Title: On a theorem of W.W. Comfort and K.A. Ross (English)
Author: Arhangel'skii, A. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 1
Year: 1999
Pages: 133-151
.
Category: math
.
Summary: A well known theorem of W.W. Comfort and K.A. Ross, stating that every pseudocompact group is $C$-embedded in its Weil completion [5] (which is a compact group), is extended to some new classes of topological groups, and the proofs are very transparent, short and elementary (the key role in the proofs belongs to Lemmas 1.1 and 4.1). In particular, we introduce a new notion of canonical uniform tightness of a topological group $G$ and prove that every $G_\delta $-dense subspace $Y$ of a topological group $G$, such that the canonical uniform tightness of $G$ is countable, is $C$-embedded in $G$. (English)
Keyword: topological group
Keyword: pseudocompact
Keyword: Frechet-Urysohn
Keyword: $G_\delta $-dense
Keyword: $C$-embed\-ded
Keyword: Moscow space
Keyword: canonical uniform tightness
Keyword: Hewitt completion
Keyword: Rajkov completion
Keyword: bounded set
Keyword: extremally disconnected
Keyword: normal space
Keyword: $k_1$-space
MSC: 22A05
MSC: 54A05
MSC: 54C45
MSC: 54D55
MSC: 54D60
MSC: 54H11
idZBL: Zbl 1060.54513
idMR: MR1715207
.
Date available: 2009-01-08T18:50:22Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119068
.
Reference: [1] Arhangel'skii A.V.: Classes of topological groups.Russian Math. Surveys 36:3 (1981), 151-174. MR 0622722
Reference: [2] Arhangel'skii A.V.: Functional tightness, $Q$-spaces, and $\tau $-embeddings.Comment. Math. Univ. Carolinae 24:1 (1983), 105-120. MR 0703930
Reference: [3] Arhangel'skii A.V., Ponomarev V.I.: Fundamentals of General Topology in Problems and Exercises.D. Reidel Publ. Co., Dordrecht-Boston, Mass., 1984. MR 0785749
Reference: [4] Chigogidze A.C.: On $\kappa $-metrizable spaces.Russian Math. Surveys 37 (1982), 209-210. Zbl 0503.54012, MR 0650791
Reference: [5] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups.Pacific J. Math. 16:3 (1966), 483-496. Zbl 0214.28502, MR 0207886
Reference: [6] Comfort W.W., Trigos-Arrieta F.J.: Locally pseudocompact topological groups.Topology Appl. 62:3 (1995), 263-280. Zbl 0828.22003, MR 1326826
Reference: [7] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [8] Glicksberg I.: Stone-Čech compactifications of products.Trans. Amer. Math. Soc. 90 (1959), 369-382. Zbl 0089.38702, MR 0105667
Reference: [9] Hernandez S., Sanchis M.: $G_\delta $-open functionally bounded subsets in topological groups.Topology Appl. 53:3 (1993), 288-299. MR 1254873
Reference: [10] Hernandez S., Sanchis M., Tkachenko M.: Bounded sets in spaces and topological groups.preprint, 1997. Zbl 0979.54037
Reference: [11] Hušek M.: Productivity of properties of topological groups.Topology Appl. 44 (1992), 189-196. MR 1173257
Reference: [12] Michael E.: A quintuple quotient quest.Gen. Topol. and Appl. 2:1 (1972), 91-138. Zbl 0238.54009, MR 0309045
Reference: [13] Pontryagin L.S.: Continuous Groups.Princeton Univ. Press, Princeton, N.J., 1956. Zbl 0659.22001
Reference: [14] Roelke W., Dierolf S.: Uniform Structures on Topological Groups and their Quotients.McGraw-Hill, New York, 1981.
Reference: [15] Tkachenko M.G.: Subgroups, quotient groups, and products of $R$-factorizable groups.Topology Proc. 16 (1991), 201-231. MR 1206464
Reference: [16] Tkachenko M.G.: Compactness type properties in topological groups.Czech. Math. J. 38 (1988), 324-341. Zbl 0664.54006, MR 0946302
Reference: [17] Tkachenko M.G.: The notion of $o$-tightness and $C$-embedded subspaces of products.Topology Appl. 15 (1983), 93-98. Zbl 0509.54013, MR 0676970
Reference: [18] Uspenskij V.V.: Topological groups and Dugundji spaces.Matem. Sb. 180:8 (1989), 1092-1118. MR 1019483
Reference: [19] de Vries J.: Pseudocompactness and the Stone-Čech compactification for topological groups.Nieuw Archef voor Wiskunde 23:3 (1975), 35-48. Zbl 0296.22003, MR 0401978
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-1_10.pdf 286.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo