Previous |  Up |  Next

Article

Title: On a generalization of $QI$-rings (English)
Author: Jirásko, J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 3
Year: 1999
Pages: 441-446
.
Category: math
.
Summary: In this paper rings for which every $s$-torsion quasi-injective module is weakly $s$-divisible for a hereditary preradical $s$ are characterized in terms of the properties of the corresponding lattice of the (hereditary) preradicals. In case of a stable torsion theory these rings coincide with $TQI$-rings investigated by J. Ahsan and E. Enochs in [1]. Our aim was to generalize some results concerning $QI$-rings obtained by J.S. Golan and S.R. L'opez-Permouth in [12]. A characterization of the $QI$-property in the category $\sigma[M]$ then follows as a consequence. (English)
Keyword: $s$-$QI$-rings
Keyword: $s$-stable preradicals
Keyword: weakly $s$-divisible modules
Keyword: $s$-tight modules
MSC: 16D50
MSC: 16N80
MSC: 16S90
idZBL: Zbl 1014.16003
idMR: MR1732491
.
Date available: 2009-01-08T18:53:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119100
.
Reference: [1] Ahsan J., Enochs E.: Rings all of whose torsion quasi-injective modules are injective.Glasgow Math. J. 25 (1984), 219-227. Zbl 0541.16019, MR 0752817
Reference: [2] Al-Huzali, Jain S.K., López-Permouth S.R.: On the weak relative injectivity of rings and modules.Lecture Notes in Math. 1448, Springer Verlag, 1990, pp.93-98. MR 1084625
Reference: [3] Azumaya G., Mbuntum F., Varadarajan K.: On $M$-projective and $M$-injective modules.Pacific J. Math. 59 (1975), 9-16. Zbl 0316.16027, MR 0384867
Reference: [4] Beachy J.A.: A generalization of injectivity.Pacific J. Math. 41 (1972), 313-328. Zbl 0235.16018, MR 0313317
Reference: [5] Bican L., Kepka T., Němec P.: Rings, Modules and Preradicals.Marcel Dekker Inc., New York and Basel, 1982. MR 0655412
Reference: [6] Boyle A.K.: Hereditary QI-rings.Trans. Amer. Math. Soc. 192 (1974), 115-120. Zbl 0286.16016, MR 0338075
Reference: [7] Bunu I.D.: On left QI-rings (in Russian).Mat. Issled. 49 (1979), 23-34. MR 0544974
Reference: [8] Byrd K.A.: When are quasi-injectives injective?.Canad. Math. Bull. 15 (1972), 599-600. Zbl 0248.16016, MR 0311715
Reference: [9] Byrd K.A.: Rings, whose quasi-injective modules are injective.Proc. Amer. Math. Soc. 33 (1972), 235-240. Zbl 0214.05605, MR 0310009
Reference: [10] Gabriel P.: Des catégories abéliennes.Bull. Soc. Math. France 90 (1962), 323-448. Zbl 0201.35602, MR 0232821
Reference: [11] Golan J.S.: Torsion Theories.Longman Scientific and Technical, Harlow, 1986. Zbl 0695.16021, MR 0880019
Reference: [12] Golan J.S., López-Permouth S.R.: QI-filters and tight modules.Comm. Algebra 19 (8) (1991), 2217-2229. MR 1123120
Reference: [13] Jain S.K., López-Permouth S.R., Singh S.: On a class of QI-rings.Glasgow Math. J. 34 (1992), 75-81. MR 1145633
Reference: [14] Jirásko J.: Generalized injectivity.Comment. Math. Univ. Carolinae 16 (1975), 621-636. MR 0399165
Reference: [15] Morimoto S.: Weakly divisible and divisible modules.Tsukuba J. Math. 6 (2) (1982), 195-200. Zbl 0529.16019, MR 0705113
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-3_4.pdf 180.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo