Title:
|
Topological dual of non-locally convex Orlicz-Bochner spaces (English) |
Author:
|
Nowak, Marian |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
40 |
Issue:
|
3 |
Year:
|
1999 |
Pages:
|
511-529 |
. |
Category:
|
math |
. |
Summary:
|
Let $L^\varphi (X)$ be an Orlicz-Bochner space defined by an Orlicz function $\varphi $ taking only finite values (not necessarily convex) over a $\sigma $-finite atomless measure space. It is proved that the topological dual $L^\varphi (X)^*$ of $L^\varphi (X)$ can be represented in the form: $L^\varphi (X)^*=L^\varphi (X)^\sim _n\oplus L^\varphi (X)^\sim _s$, where $L^\varphi (X)^\sim_n$ and $L^\varphi (X)^\sim_s$ denote the order continuous dual and the singular dual of $L^\varphi (X)$ respectively. The spaces $L^\varphi (X)^*$, $L^\varphi (X)^\sim _n$ and $L^\varphi (X)^\sim _s$ are examined by means of the H. Nakano's theory of conjugate modulars. (Studia Mathematica 31 (1968), 439--449). The well known results of the duality theory of Orlicz spaces are extended to the vector-valued setting. (English) |
Keyword:
|
vector-valued function spaces |
Keyword:
|
Orlicz functions |
Keyword:
|
Orlicz spaces |
Keyword:
|
Orlicz-Bochner spaces |
Keyword:
|
topological dual |
Keyword:
|
order dual |
Keyword:
|
order continuous linear functionals |
Keyword:
|
singular linear functionals |
Keyword:
|
modulars |
Keyword:
|
conjugate modulars |
MSC:
|
46A20 |
MSC:
|
46E30 |
MSC:
|
46E40 |
idZBL:
|
Zbl 1010.46028 |
idMR:
|
MR1732484 |
. |
Date available:
|
2009-01-08T18:54:44Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119107 |
. |
Reference:
|
[1] Aliprantis C.D., Burkinshaw O.: Locally solid Riesz spaces.Academic Press, New York, 1978. Zbl 1043.46003, MR 0493242 |
Reference:
|
[2] Ando T.: Linear functionals on Orlicz spaces.Niew Arch. Wisk. 8 (1960), 1-16. Zbl 0129.08001, MR 0123907 |
Reference:
|
[3] Behrends E.: M-structure and the Banach-Stone theorem.Lecture Notes in Math. 736, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl 0371.46013, MR 0547509 |
Reference:
|
[4] Bochner S., Taylor A.E.: Linear functionals on certain spaces of abstractly-valued functions.Ann. of Math. (2) 39 (1938), 913-944. Zbl 0020.37101, MR 1503445 |
Reference:
|
[5] Bukhvalov A.V.: On an analytic representation of operators with abstract norm.Soviet Math. Dokl. 14 (1973), 197-201. Zbl 0283.47028 |
Reference:
|
[6] Bukhvalov A.V.: On an analytic representation of operators with abstract norm (in Russian).Izv. Vyss. Uceb. Zaved. 11 (1975), 21-32. MR 0470746 |
Reference:
|
[7] Bukhvalov A.V.: On an analytic representation of linear operators by vector-valued measurable functions (in Russian).Izv. Vyss. Uceb. Zaved. 7 (1977), 21-31. |
Reference:
|
[8] Bukhvalov A.V., Lozanowskii G.Ya.: On sets closed in measure in spaces of measurable functions.Trans. Moscow Math. Soc. 2 (1978), 127-148. |
Reference:
|
[9] Chen S., Hudzik H.: On some convexities of Orlicz and Orlicz-Bochner spaces.Comment. Math. Univ. Carolinae 29.1 (1988), 13-29. Zbl 0647.46030, MR 0937545 |
Reference:
|
[10] Day M.M.: The spaces $L^p$ with $0<p<1$.Bull. Amer. Math. Soc. 46 (1940), 816-823. MR 0002700 |
Reference:
|
[11] Drewnowski L.: Compact operators on Musielak-Orlicz spaces.Comment. Math. 27 (1988), 225-232. Zbl 0676.46024, MR 0978274 |
Reference:
|
[12] Escribano C., Fernández F.J., Jiminéz Guerra P.: On the Orlicz spaces of functions valued in locally convex spaces.Comment. Math. 32 (1992), 33-44. MR 1202756 |
Reference:
|
[13] Gramsch B.: Die Klasse metrischer linear Raüme $\Cal L_\Phi $.Math. Ann. 176 (1967), 61-78. MR 0209819 |
Reference:
|
[14] Hernandez F.: Continuous functionals on a class of Orlicz spaces.Houston J. Math. 11 2 (1985), 171-181. Zbl 0577.46025, MR 0792193 |
Reference:
|
[15] Ionescu Tulcea A., Ionescu Tulcea C.: Topics in the Theory of Lifting.Springer-Verlag, Berlin-Heidelberg-New York, 1969. Zbl 0179.46303, MR 0276438 |
Reference:
|
[16] Kamińska A., Turett B.: Uniformly non-$l^1(n)$ Orlicz-Bochner spaces.Bull. Polon. Acad. Sci. 35 3-4 (1987), 211-218. MR 0908170 |
Reference:
|
[17] Kantorovich L.V., Akilov G.P.: Functional Analysis (in Russian).Nauka, Moscow, 1984 (3$^{rd}$ edition). MR 0788496 |
Reference:
|
[18] Luxemburg W.A.: Banach Function Spaces.Delft, 1955. Zbl 0162.44701, MR 0072440 |
Reference:
|
[19] Luxemburg W.A., Zaanen A.C.: Conjugate spaces of Orlicz spaces.Indagationes Math. 59 (1956), 217-228. Zbl 0072.12301, MR 0077899 |
Reference:
|
[20] Maligranda L., Wnuk W.: Landau type theorem for Orlicz spaces.Math. Z. 208 (1991), 57-64. Zbl 0738.46013, MR 1125732 |
Reference:
|
[21] Musielak J., Orlicz W.: Some remarks on modular spaces.Bull. Acad. Polon. Sci. 7 (1959), 661-668. Zbl 0099.09202, MR 0112017 |
Reference:
|
[22] Musielak J.: Orlicz spaces and modular spaces.Lecture Notes Math. 1034, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. Zbl 0557.46020, MR 0724434 |
Reference:
|
[23] Nakano H.: On generalized modular spaces.Studia Math. 31 (1968), 439-449. MR 0234248 |
Reference:
|
[24] Nowak M.: On the order structure of Orlicz lattices.Bull. Acad. Polon. Sci. 36 5-6 (1988), 239-249. Zbl 0767.46005, MR 1101668 |
Reference:
|
[25] Nowak M.: Order continuous linear functionals on non-locally convex Orlicz spaces.Comment. Math. Univ. Carolinae 33.3 (1992), 465-475. Zbl 0812.46017, MR 1209288 |
Reference:
|
[26] Nowak M.: Duality of non-locally convex Orlicz spaces.Math. Japonica 5 (1993), 813-832. Zbl 0801.46029, MR 1240281 |
Reference:
|
[27] Nowak M.: Duality theory of vector-valued function spaces I.Comment. Math. 37 (1997), 195-215. Zbl 0908.46023, MR 1608189 |
Reference:
|
[28] Nowak M.: A note on generalized Young's inequality for Orlicz functions.Funct. et Approx. 26 (1998), 3 225-231. Zbl 0927.46020, MR 1666621 |
Reference:
|
[29] Nowak M.: Mackey topologies of Orlicz-Bochner spaces.Proc. Razmadze Math. Inst. 118 (1998), 101-110. Zbl 0951.46011, MR 1693247 |
Reference:
|
[30] Orlicz W.: A note on modular spaces I.Bull. Acad. Polon. Sci. 9 (1961), 157-162. Zbl 0109.33404, MR 0131763 |
Reference:
|
[31] Orlicz W.: On integral representability of linear functionals over the space of $\varphi $-integrable functions.Bull. Acad. Polon. Sci. 8 (1960), 567-569. MR 0126160 |
Reference:
|
[32] Rao M.M.: Linear functionals on Orlicz spaces: General theory.Pacific J. Math. 25 3 (1968), 553-585. Zbl 0164.43601, MR 0412791 |
Reference:
|
[33] Rao M.M., Ren Z.D.: Theory of Orlicz Spaces.Marcel Dekker, New York, Basel, Hong Kong, 1991. Zbl 0724.46032, MR 1113700 |
Reference:
|
[34] Rolewicz S.: Some remarks on the spaces $N(L)$ and $N(l)$.Studia Math. 18 (1959), 1-9. Zbl 0085.32301, MR 0103413 |
Reference:
|
[35] Turpin P.: Convexités dans les espaces vectoriels topologiques généraux.Dissertationes Math. 131 (1976). Zbl 0331.46001, MR 0423044 |
Reference:
|
[36] Wilansky A.: Modern methods in topological vector spaces.McGrawhill, Inc., 1978. Zbl 0395.46001, MR 0518316 |
Reference:
|
[37] Zaanen A.C.: Riesz Spaces II.North-Holland Publ. Com., Amsterdam, New York, Oxford, 1983. Zbl 0519.46001, MR 0704021 |
. |