Previous |  Up |  Next

Article

Title: Topological dual of non-locally convex Orlicz-Bochner spaces (English)
Author: Nowak, Marian
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 3
Year: 1999
Pages: 511-529
.
Category: math
.
Summary: Let $L^\varphi (X)$ be an Orlicz-Bochner space defined by an Orlicz function $\varphi $ taking only finite values (not necessarily convex) over a $\sigma $-finite atomless measure space. It is proved that the topological dual $L^\varphi (X)^*$ of $L^\varphi (X)$ can be represented in the form: $L^\varphi (X)^*=L^\varphi (X)^\sim _n\oplus L^\varphi (X)^\sim _s$, where $L^\varphi (X)^\sim_n$ and $L^\varphi (X)^\sim_s$ denote the order continuous dual and the singular dual of $L^\varphi (X)$ respectively. The spaces $L^\varphi (X)^*$, $L^\varphi (X)^\sim _n$ and $L^\varphi (X)^\sim _s$ are examined by means of the H. Nakano's theory of conjugate modulars. (Studia Mathematica 31 (1968), 439--449). The well known results of the duality theory of Orlicz spaces are extended to the vector-valued setting. (English)
Keyword: vector-valued function spaces
Keyword: Orlicz functions
Keyword: Orlicz spaces
Keyword: Orlicz-Bochner spaces
Keyword: topological dual
Keyword: order dual
Keyword: order continuous linear functionals
Keyword: singular linear functionals
Keyword: modulars
Keyword: conjugate modulars
MSC: 46A20
MSC: 46E30
MSC: 46E40
idZBL: Zbl 1010.46028
idMR: MR1732484
.
Date available: 2009-01-08T18:54:44Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119107
.
Reference: [1] Aliprantis C.D., Burkinshaw O.: Locally solid Riesz spaces.Academic Press, New York, 1978. Zbl 1043.46003, MR 0493242
Reference: [2] Ando T.: Linear functionals on Orlicz spaces.Niew Arch. Wisk. 8 (1960), 1-16. Zbl 0129.08001, MR 0123907
Reference: [3] Behrends E.: M-structure and the Banach-Stone theorem.Lecture Notes in Math. 736, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl 0371.46013, MR 0547509
Reference: [4] Bochner S., Taylor A.E.: Linear functionals on certain spaces of abstractly-valued functions.Ann. of Math. (2) 39 (1938), 913-944. Zbl 0020.37101, MR 1503445
Reference: [5] Bukhvalov A.V.: On an analytic representation of operators with abstract norm.Soviet Math. Dokl. 14 (1973), 197-201. Zbl 0283.47028
Reference: [6] Bukhvalov A.V.: On an analytic representation of operators with abstract norm (in Russian).Izv. Vyss. Uceb. Zaved. 11 (1975), 21-32. MR 0470746
Reference: [7] Bukhvalov A.V.: On an analytic representation of linear operators by vector-valued measurable functions (in Russian).Izv. Vyss. Uceb. Zaved. 7 (1977), 21-31.
Reference: [8] Bukhvalov A.V., Lozanowskii G.Ya.: On sets closed in measure in spaces of measurable functions.Trans. Moscow Math. Soc. 2 (1978), 127-148.
Reference: [9] Chen S., Hudzik H.: On some convexities of Orlicz and Orlicz-Bochner spaces.Comment. Math. Univ. Carolinae 29.1 (1988), 13-29. Zbl 0647.46030, MR 0937545
Reference: [10] Day M.M.: The spaces $L^p$ with $0<p<1$.Bull. Amer. Math. Soc. 46 (1940), 816-823. MR 0002700
Reference: [11] Drewnowski L.: Compact operators on Musielak-Orlicz spaces.Comment. Math. 27 (1988), 225-232. Zbl 0676.46024, MR 0978274
Reference: [12] Escribano C., Fernández F.J., Jiminéz Guerra P.: On the Orlicz spaces of functions valued in locally convex spaces.Comment. Math. 32 (1992), 33-44. MR 1202756
Reference: [13] Gramsch B.: Die Klasse metrischer linear Raüme $\Cal L_\Phi $.Math. Ann. 176 (1967), 61-78. MR 0209819
Reference: [14] Hernandez F.: Continuous functionals on a class of Orlicz spaces.Houston J. Math. 11 2 (1985), 171-181. Zbl 0577.46025, MR 0792193
Reference: [15] Ionescu Tulcea A., Ionescu Tulcea C.: Topics in the Theory of Lifting.Springer-Verlag, Berlin-Heidelberg-New York, 1969. Zbl 0179.46303, MR 0276438
Reference: [16] Kamińska A., Turett B.: Uniformly non-$l^1(n)$ Orlicz-Bochner spaces.Bull. Polon. Acad. Sci. 35 3-4 (1987), 211-218. MR 0908170
Reference: [17] Kantorovich L.V., Akilov G.P.: Functional Analysis (in Russian).Nauka, Moscow, 1984 (3$^{rd}$ edition). MR 0788496
Reference: [18] Luxemburg W.A.: Banach Function Spaces.Delft, 1955. Zbl 0162.44701, MR 0072440
Reference: [19] Luxemburg W.A., Zaanen A.C.: Conjugate spaces of Orlicz spaces.Indagationes Math. 59 (1956), 217-228. Zbl 0072.12301, MR 0077899
Reference: [20] Maligranda L., Wnuk W.: Landau type theorem for Orlicz spaces.Math. Z. 208 (1991), 57-64. Zbl 0738.46013, MR 1125732
Reference: [21] Musielak J., Orlicz W.: Some remarks on modular spaces.Bull. Acad. Polon. Sci. 7 (1959), 661-668. Zbl 0099.09202, MR 0112017
Reference: [22] Musielak J.: Orlicz spaces and modular spaces.Lecture Notes Math. 1034, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. Zbl 0557.46020, MR 0724434
Reference: [23] Nakano H.: On generalized modular spaces.Studia Math. 31 (1968), 439-449. MR 0234248
Reference: [24] Nowak M.: On the order structure of Orlicz lattices.Bull. Acad. Polon. Sci. 36 5-6 (1988), 239-249. Zbl 0767.46005, MR 1101668
Reference: [25] Nowak M.: Order continuous linear functionals on non-locally convex Orlicz spaces.Comment. Math. Univ. Carolinae 33.3 (1992), 465-475. Zbl 0812.46017, MR 1209288
Reference: [26] Nowak M.: Duality of non-locally convex Orlicz spaces.Math. Japonica 5 (1993), 813-832. Zbl 0801.46029, MR 1240281
Reference: [27] Nowak M.: Duality theory of vector-valued function spaces I.Comment. Math. 37 (1997), 195-215. Zbl 0908.46023, MR 1608189
Reference: [28] Nowak M.: A note on generalized Young's inequality for Orlicz functions.Funct. et Approx. 26 (1998), 3 225-231. Zbl 0927.46020, MR 1666621
Reference: [29] Nowak M.: Mackey topologies of Orlicz-Bochner spaces.Proc. Razmadze Math. Inst. 118 (1998), 101-110. Zbl 0951.46011, MR 1693247
Reference: [30] Orlicz W.: A note on modular spaces I.Bull. Acad. Polon. Sci. 9 (1961), 157-162. Zbl 0109.33404, MR 0131763
Reference: [31] Orlicz W.: On integral representability of linear functionals over the space of $\varphi $-integrable functions.Bull. Acad. Polon. Sci. 8 (1960), 567-569. MR 0126160
Reference: [32] Rao M.M.: Linear functionals on Orlicz spaces: General theory.Pacific J. Math. 25 3 (1968), 553-585. Zbl 0164.43601, MR 0412791
Reference: [33] Rao M.M., Ren Z.D.: Theory of Orlicz Spaces.Marcel Dekker, New York, Basel, Hong Kong, 1991. Zbl 0724.46032, MR 1113700
Reference: [34] Rolewicz S.: Some remarks on the spaces $N(L)$ and $N(l)$.Studia Math. 18 (1959), 1-9. Zbl 0085.32301, MR 0103413
Reference: [35] Turpin P.: Convexités dans les espaces vectoriels topologiques généraux.Dissertationes Math. 131 (1976). Zbl 0331.46001, MR 0423044
Reference: [36] Wilansky A.: Modern methods in topological vector spaces.McGrawhill, Inc., 1978. Zbl 0395.46001, MR 0518316
Reference: [37] Zaanen A.C.: Riesz Spaces II.North-Holland Publ. Com., Amsterdam, New York, Oxford, 1983. Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-3_11.pdf 298.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo