Previous |  Up |  Next

Article

Title: Primes, coprimes and multiplicative elements (English)
Author: Janowitz, Melvin F.
Author: Powers, R. C.
Author: Riedel, T.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 4
Year: 1999
Pages: 607-615
.
Category: math
.
Summary: The purpose of this paper is to study conditions under which the restriction of a certain Galois connection on a complete lattice yields an isomorphism from a set of prime elements to a set of coprime elements. An important part of our study involves the set on which the way-below relation is multiplicative. (English)
Keyword: complete lattices
Keyword: completely distributive lattices
Keyword: Galois connection
Keyword: multiplicative elements
Keyword: way-below relation
MSC: 06A15
MSC: 06B23
MSC: 06B35
MSC: 06D10
idZBL: Zbl 1011.06009
idMR: MR1756539
.
Date available: 2009-01-08T18:55:52Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119117
.
Reference: [1] Birkhoff G.: Lattice Theory.American Mathematical Society, Providence RI, 1948. Zbl 0537.06001, MR 0029876
Reference: [2] Gierz G., Hoffmann K.H., Keimel K., Mislove M., Scott D.S.: A Compendium of Continuous Lattices.Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 0674650
Reference: [3] Dwinger P.: Unary operations on completely distributive complete lattices.Springer Lecture Notes in Math. 1149 (1985), 46-81. Zbl 0575.06011, MR 0823006
Reference: [4] Gratzer G.A.: Lattice theory; first concepts and distributive lattices.W.H. Freeman, San Francisco, 1971. MR 0321817
Reference: [5] Raney G.N.: Completely distributive complete lattices.Proc. Amer. Math. Soc. 3 (1952), 677-680. Zbl 0049.30304, MR 0052392
Reference: [6] Zhao D.: Semicontinuous lattices.Algebra Universalis 37 (1997), 458-476. Zbl 0903.06005, MR 1465303
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-4_1.pdf 206.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo