Previous |  Up |  Next

Article

Title: On reductive and distributive algebras (English)
Author: Romanowska, Anna
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 4
Year: 1999
Pages: 617-629
.
Category: math
.
Summary: The paper investigates idempotent, reductive, and distributive groupoids, and more generally $\Omega$-algebras of any type including the structure of such groupoids as reducts. In particular, any such algebra can be built up from algebras with a left zero groupoid operation. It is also shown that any two varieties of left $k$-step reductive $\Omega$-algebras, and of right $n$-step reductive $\Omega$-algebras, are independent for any positive integers $k$ and $n$. This gives a structural description of algebras in the join of these two varieties. (English)
Keyword: idempotent and distributive groupoids and algebras
Keyword: Mal'cev products of varieties of algebras
Keyword: independent varieties
MSC: 03C05
MSC: 08A05
MSC: 08B05
MSC: 08C15
idZBL: Zbl 1010.08002
idMR: MR1756540
.
Date available: 2009-01-08T18:55:59Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119118
.
Reference: [De] Dehornoy P.: Notes on Self-distributivity.preprint, Mathématiques, Université de Caen, France.
Reference: [Du] Dudek J.: On varieties of groupoid modes.Demonstratio Math. 27 (1994), 815-828. Zbl 0835.08003, MR 1319426
Reference: [GLP] Grätzer G., Lakser H., Płonka J.: Joins and direct product of equational classes.Canad. Math. Bull. 12 (1969), 741-744. MR 0276160
Reference: [JKN] Ježek J., Kepka T., Němec P.: Distributive Groupoids.Academia Praha (1981). MR 0672563
Reference: [Kn] Knoebel A.: A product of independent algebras with finitely generated identities.Algebra Universalis 3 (1973), 147-151. MR 0349543
Reference: [M] Mal'cev A.I.: Multiplication of classes of algebraic systems (in Russian).Sibirsk. Mat. Zh. 8 (1967), 346-365. MR 0213276
Reference: [PiR] Pilitowska A., Romanowska A.: Reductive modes.Periodica Math. Hung. 36 (1998), 67-78. Zbl 0924.08001, MR 1684506
Reference: [PłR] Płonka J., Romanowska A.: Semilattice sums.Universal Algebra and Quasigroups (eds. A. Romanowska, J.D.H. Smith), Heldermann Verlag, Berlin (1992), 123-158. MR 1191231
Reference: [PRR] Pilitowska A., Romanowska A., Roszkowska B.: Products of mode varieties and algebras of subalgebras.Math. Slovaca 46 (1996), 497-514. Zbl 0890.08003, MR 1451038
Reference: [RS] Romanowska A., Smith J.D.H.: Modal Theory.Heldermann Verlag, Berlin, 1985. Zbl 0553.08001, MR 0788695
Reference: [RT] Romanowska A., Traina S.: Algebraic quasi-orders and sums of algebras.Discuss. Math. Algebra Stochastic Methods 19 (1999), 239-263. Zbl 0949.08001, MR 1709970
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-4_2.pdf 212.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo