Previous |  Up |  Next

Article

Title: Surjective factorization of holomorphic mappings (English)
Author: González, Manuel
Author: Gutiérrez, Joaquín M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 3
Year: 2000
Pages: 469-476
.
Category: math
.
Summary: We characterize the holomorphic mappings $f$ between complex Ba\-nach spaces that may be written in the form $f=T\circ g$, where $g$ is another holomorphic mapping and $T$ belongs to a closed surjective operator ideal. (English)
Keyword: factorization
Keyword: holomorphic mapping between Banach spaces
Keyword: operator ideal
MSC: 46G20
MSC: 47D50
MSC: 47L20
idZBL: Zbl 1040.46033
idMR: MR1795078
.
Date available: 2009-01-08T19:04:04Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119182
.
Reference: [1] Aron R.M., Galindo P.: Weakly compact multilinear mappings.Proc. Edinburgh Math. Soc. 40 (1997), 181-192. Zbl 0901.46038, MR 1437822
Reference: [2] Aron R.M., Schottenloher M.: Compact holomorphic mappings on Banach spaces and the approximation property.J. Funct. Anal. 21 (1976), 7-30. Zbl 0328.46046, MR 0402504
Reference: [3] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55-58. Zbl 0601.47019, MR 0774176
Reference: [4] Davis W.J., Figiel T., Johnson W.B., Pełczyński A.: Factoring weakly compact operators.J. Funct. Anal. 17 (1974), 311-327. MR 0355536
Reference: [5] Dineen S.: Complex Analysis in Locally Convex Spaces.Math. Studies 57, North-Holland, Amsterdam, 1981. Zbl 0484.46044, MR 0640093
Reference: [6] Domański P., Lindström M., Schlüchtermann G.: Grothendieck operators on tensor products.Proc. Amer. Math. Soc. 125 (1997), 2285-2291. MR 1372028
Reference: [7] Geiss S.: Ein Faktorisierungssatz für multilineare Funktionale.Math. Nachr. 134 (1987), 149-159. Zbl 0651.46070, MR 0918674
Reference: [8] González M.: Dual results of factorization for operators.Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 3-11. MR 1207890
Reference: [9] González M., Gutiérrez J.M.: Factorization of weakly continuous holomorphic mappings.Studia Math. 118 (1996), 117-133. MR 1389759
Reference: [10] González M., Gutiérrez J.M.: Injective factorization of holomorphic mappings.Proc. Amer. Math. Soc. 127 (1999), 1715-1721. MR 1610897
Reference: [11] González M., Onieva V.M.: Lifting results for sequences in Banach spaces.Math. Proc. Cambridge Philos. Soc. 105 (1989), 117-121. MR 0966145
Reference: [12] Heinrich S.: Closed operator ideals and interpolation.J. Funct. Anal. 35 (1980), 397-411. Zbl 0439.47029, MR 0563562
Reference: [13] Jarchow H.: Weakly compact operators on $C(K)$ and $C^*$-algebras.in: H. Hogbe-Nlend (ed.), Functional Analysis and its Applications, World Sci., Singapore, 1988, pp.263-299. Zbl 0757.47020, MR 0979519
Reference: [14] Jarchow H., Matter U.: On weakly compact operators on $C(K)$-spaces.in: N. Kalton and E. Saab (eds.), Banach Spaces (Proc., Missouri 1984), Lecture Notes in Math. 1166, Springer, Berlin, 1985, pp.80-88. MR 0827762
Reference: [15] Lindström M.: On compact and bounding holomorphic mappings.Proc. Amer. Math. Soc. 105 (1989), 356-361. MR 0933517
Reference: [16] Mujica J.: Complex Analysis in Banach Spaces.Math. Studies 120, North-Holland, Amsterdam, 1986. Zbl 0586.46040, MR 0842435
Reference: [17] Nachbin L.: Topology on Spaces of Holomorphic Mappings.Ergeb. Math. Grenzgeb. 47, Springer, Berlin, 1969. Zbl 0172.39902, MR 0254579
Reference: [18] Pietsch A.: Operator Ideals.North-Holland Math. Library 20, North-Holland, Amsterdam, 1980. Zbl 1012.47001, MR 0582655
Reference: [19] Robertson N.: Asplund operators and holomorphic maps.Manuscripta Math. 75 (1992), 25-34. Zbl 0805.46044, MR 1156212
Reference: [20] Ryan R.A.: Weakly compact holomorphic mappings on Banach spaces.Pacific J. Math. 131 (1988), 179-190. Zbl 0605.46038, MR 0917872
Reference: [21] Stephani I.: Generating systems of sets and quotients of surjective operator ideals.Math. Nachr. 99 (1980), 13-27. Zbl 0474.47019, MR 0637639
Reference: [22] Valdivia M.: On a class of Banach spaces.Studia Math. 60 (1977), 11-13. Zbl 0354.46012, MR 0430755
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-3_5.pdf 212.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo