[1] Anderson F.W., Fuller K.R.: 
Rings and Categories of Modules. Graduate Texts in Mathematics, vol.13 Springer-Verlag (1974). 
MR 0417223 | 
Zbl 0301.16001[2] Bican L., El Bashir R., Enochs E.: 
All modules have flat covers. Bull. London Math. Soc. 33 (2001), 385-390. 
MR 1832549 | 
Zbl 1029.16002[3] Bican L., Kepka T., Němec P.: 
Rings, Modules, and Preradicals. Marcel Dekker New York (1982). 
MR 0655412[7] Enochs E.: 
Injective and flat covers, envelopes and resolvents. Israel J. Math. 39 (1981), 189-209. 
MR 0636889 | 
Zbl 0464.16019[8] García Rozas J.R., Torrecillas B.: 
On the existence of covers by injective modules relative to a torsion theory. Comm. Algebra 24 (1996), 1737-1748. 
MR 1386494[9] Golan J.: 
Torsion Theories. Pitman Monographs and Surveys in Pure an Applied Mathematics, 29 Longman Scientific and Technical (1986). 
MR 0880019 | 
Zbl 0657.16017[10] Rada J., Saorín M.: 
Rings characterized by (pre)envelopes and (pre)covers of their modules. Comm. Algebra 26 (1998), 899-912. 
MR 1606190 | 
Zbl 0908.16003[13] Torrecillas B.: 
T-torsionfree T-injective covers. Comm. Algebra 12 (1984), 2707-2726. 
MR 0757788[14] Xu J.: 
Flat covers of modules. Lecture Notes in Mathematics, 1634, Springer Verlag Berlin-Heidelberg-New York (1996). 
MR 1438789 | 
Zbl 0860.16002