[2] Bernardes G., Sommen F.: 
Monogenic functions of higher spin by Cauchy-Kowalevska extension of real-analytic functions. Complex Variables Theory Appl. 39 (1999), 4 305-325. 
MR 1727626[3] Bureš J.: 
Special invariant operators. Comment. Math. Univ. Carolinae 37 (1996), 1 179-198. 
MR 1396170[4] Bureš J.: 
The higher spin Dirac operators. Proc. Conf. Diff. Geometry and its Applications, 1998, pp.319-334. 
MR 1708920[5] Bureš J.: 
The Rarita-Schwinger equation and spherical monogenic forms. Complex Variables Theory Appl. 43 (2000), 77-108. 
MR 1809813[6] Bureš J.: 
Monogenic forms of the polynomial type. 2000, accepted in Proc. Conf. Clifford Anal. and its Appl., Prague, 2000. 
MR 1890434[7] Bureš J., Souček V.: 
Eigenvalues of conformally invariant operators on spheres. Proc. 18th Winter School Geom. and Phys., Serie II., Suppl. 59, 1999, pp.109-122. 
MR 1692262[8] Bureš J., Souček V., Sommen F., Van Lancker P.: Symmetric analogues of Rarita-Schwinger equations. 2000, accepted in Annals of Global Analysis and Geometry, Kluwer Publ.
[9] Bureš J., Souček V., Sommen F., Van Lancker P.: Rarita-Schwinger type operators in Clifford analysis. 2000, accepted in J. Funct. Analysis.
[10] Čap A., Slovák J., Souček V.: Invariant operators on manifolds with AHS structures, I.,II. Acta Math. Univ. Comenianae 66 (1997), 33-69, 203-220.
[11] Fegan H.D.: 
Conformally invariant first order differential operators. Quart. J. Math. 27 (1976), 371-378. 
MR 0482879 | 
Zbl 0334.58016[13] Homma Y.: 
The higher spin Dirac operators on $3$-dimensional manifolds. preprint arXiv:math.DG/0006210. 
MR 1874992 | 
Zbl 1021.53026[14] Homma Y.: 
Spinor-valued and Clifford algebra-valued harmonic polynomials. submitted to Geometry and Physics. 
Zbl 0972.43005[15] Lawson H.B. jr., Michelson M.L.: 
Spin Geometry. Princeton University Press, 1989. 
MR 1031992[16] Littelmann P.: 
A generalization of the Littlewood-Richardson rule. J. Algebra 130 (1990), 2 328-368. 
MR 1051307 | 
Zbl 0704.20033[17] Morrey C.B. jr., Nirenberg L.: 
On the analycity of the solutions of linear elliptic systems of PDEs. Com. Pure Appl. Math. 10 (1957), 271-290. 
MR 0089334[19] Severa V.: Invariant differential operators on Spinor-valued differential forms. Dissertation, Charles University, Prague, 1998.
[20] Slovák J.: Invariant operators on conformal manifolds. Research Lecture Notes, University of Vienna, 1992.
[21] Slovák J.: Parabolic Geometries. DrSc Dissertation, Masaryk University Brno, 1998.
[22] Plechšmíd M.: Polynomial solutions for a class of higher spin equations. Dissertation, Charles University, Prague, 2001.