Article
Keywords:
Penrose transform; conformally invariant operators
Summary:
It is shown that operators occurring in the classical Penrose transform are differential. These operators are identified depending on line bundles over the twistor space.
References:
                        
 Baston R.J., Eastwood M.G.: 
The Penrose Transform and its Interaction with Representation Theory. Oxford University Press (1989). 
MR 1038279 Eastwood M.G.: 
A duality for homogeneous bundles on twistor space. J. London Math. Soc. 31 (1985), 349-356. 
MR 0809956 | 
Zbl 0534.14008 Griffiths P., Harris J.: 
Principles of Algebraic Geometry. A Wiley-Intescience Publication (1978). 
MR 0507725 | 
Zbl 0408.14001 Gunning R.C., Rossi H.: 
Analytic Functions of Several Complex Variables. Prentice-Hall (1965). 
MR 0180696 | 
Zbl 0141.08601 Rocha-Cardini A.: 
Splitting criteria for $\mathfrak g$-modules induced from parabolic and the Bernstain-Gelfand-Gelfand resolution of a finite dimensional, irreducible $\mathfrak g$-module. Trans. Amer. Math. Soc. (1980), 262 335-361. 
MR 0586721 Slovák J.: 
Natural operators on conformal manifolds. Dissertation (1994), Masaryk University Brno. 
MR 1255551 Ward R.S., Wells R.O.: 
Twistor Geometry and Field Theory. Cambridge University Press (1983). 
MR 1054377