[1] Berg C., Forst G.: 
Potential theory on locally compact Abellian Groups. Springer-Verlag, Berlin-Heidelberg-New York, 1975. 
MR 0481057[2] Boboc N., Bucut G., Cornea A.: Order and Convexity in Potential Theory. Lecture Notes in Math. 853, Springer, Berlin-Heidelberg-New York, 1980.
[4] Fitzsimmons P.J.: 
Markov processes and non symmetric Dirichlet forms without regularity. J. Funct. Anal. 85 287-306 (1989). 
MR 1012207[5] Fitzsimmons P.J., Getoor R.K.: 
On the potential theory of symmetric Markov processes. Math. Ann. 281 495-512 (1988). 
MR 0954155 | 
Zbl 0627.60067[6] Fukushima M.: 
Dirichlet Forms and Markov Processes. North-Holland, Amsterdam-Oxford-New York, 1980. 
MR 0569058 | 
Zbl 0422.31007[8] Getoor R.K., Glover J.: 
Riesz decomposition in Markov process theory. Trans. Amer. Math. Soc. 285 107-132 (1989). 
MR 0748833[9] Getoor R.K., Sharpe M.P.: 
Naturality standardness and weak duality for Markov processes. Z. Wahrsch verw. Gebiete 67 1-62 (1984). 
MR 0756804 | 
Zbl 0553.60070[10] Hmissi M.: 
Lois de sortie et semi-groupes basiques. Manuscripta Math. 75 293-302 (1992). 
MR 1167135 | 
Zbl 0759.60080[12] Hmissi M.: 
On the functional equation of exit laws for lattice semi-groups. Ann. Ecole Normale Superieure de Cracowie 196 63-72 (1998). 
MR 1826075[13] Janssen K.: 
Representation of excessive measures. Sem. Stoch. Processes Birkhäuser, Boston, Mass., 1987, pp.85-105. 
MR 0902428 | 
Zbl 0619.47035[14] Silverstein M.: 
Symmetric Markov Processes. Lecture Notes in Math. 426, Springer, Berlin-Heidelberg-New York, 1974. 
MR 0386032 | 
Zbl 0331.60046