[1] Benyamini Y., Lindenstrauss J.: 
Geometric Nonlinear Functional Analysis. Amer. Math. Soc. Providence, RI (2000). 
MR 1727673 | 
Zbl 0946.46002[2] De Blasi F.S., Georgiev P.G., Myjak J.: 
On porous sets and best approximation theory. preprint. 
Zbl 1088.41015[3] De Blasi F.S., Myjak J.: 
On the minimum distance theorem to a closed convex set in a Banach space. Bull. Acad. Polon. Sci. 29 373-376 (1981). 
MR 0640331 | 
Zbl 0515.41031[4] De Blasi F.S., Myjak J.: 
On almost well posed problems in the theory of best approximation. Bull. Math. Soc. Sci. Math. R.S. Roum. 28 109-117 (1984). 
MR 0771542 | 
Zbl 0593.41026[5] De Blasi F.S., Myjak J., Papini P.L.: 
Porous sets in best approximation theory. J. London Math. Soc. 44 135-142 (1991). 
MR 1122975 | 
Zbl 0786.41027[6] Furi M., Vignoli A.: About well-posed minimization problems for functionals in metric spaces. J. Optim. Theory Appl. 5 225-229 (1970).
[7] Matoušková E.: 
How small are the sets where the metric projection fails to be continuous. Acta Univ. Carolin. Math. Phys. 33 99-108 (1992). 
MR 1287230[8] Reich S., Zaslavski A.J.: 
Asymptotic behavior of dynamical systems with a convex Lyapunov function. J. Nonlinear Convex Anal. 1 107-113 (2000). 
MR 1751731 | 
Zbl 0984.37016[9] Reich S., Zaslavski A.J.: 
Well-posedness and porosity in best approximation problems. Topol. Methods Nonlinear Anal. 18 395-408 (2001). 
MR 1911709 | 
Zbl 1005.41011[10] Reich S., Zaslavski A.J.: 
A porosity result in best approximation theory. J. Nonlinear Convex Anal. 4 165-173 (2003). 
MR 1986978 | 
Zbl 1024.41017[11] L. Zajíček: 
On the Fréchet differentiability of distance functions. Suppl. Rend. Circ. Mat. Palermo (2) 5 161-165 (1984). 
MR 0781948[12] Zajíček L.: 
Porosity and $\sigma$-porosity. Real Anal. Exchange 13 314-350 (1987). 
MR 0943561[13] Zajíček L.: 
Small non-$\sigma$-porous sets in topologically complete metric spaces. Colloq. Math. 77 293-304 (1998). 
MR 1628994[14] Zaslavski A.J.: 
Well-posedness and porosity in optimal control without convexity assumptions. Calc. Var. 13 265-293 (2001). 
MR 1864999 | 
Zbl 1032.49035