Previous |  Up |  Next

Article

Title: Subgroups and products of $\Bbb R$-factorizable $P$-groups (English)
Author: Hernández, Constancio
Author: Tkachenko, Michael
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 1
Year: 2004
Pages: 153-167
.
Category: math
.
Summary: We show that {\it every\/} subgroup of an $\Bbb R$-factorizable abelian $P$-group is topologically isomorphic to a {\it closed\/} subgroup of another $\Bbb R$-factorizable abelian $P$-group. This implies that closed subgroups of $\Bbb R$-factorizable $P$-groups are not necessarily $\Bbb R$-factorizable. We also prove that if a Hausdorff space $Y$ of countable pseudocharacter is a continuous image of a product $X=\prod_{i\in I}X_i$ of $P$-spaces and the space $X$ is pseudo-$\omega _1$-compact, then $nw(Y)\leq \aleph_0$. In particular, direct products of $\Bbb R$-factorizable $P$-groups are $\Bbb R$-factorizable and $\omega $-stable. (English)
Keyword: $P$-space
Keyword: $P$-group
Keyword: pseudo-$\omega _1$-compact
Keyword: $\omega $-stable
Keyword: $\Bbb R$-factorizable
Keyword: $\aleph _0$-bounded
Keyword: pseudocharacter
Keyword: cellularity
Keyword: $\aleph_ 0$-box topology
Keyword: $\sigma $-product
MSC: 22A05
MSC: 54A25
MSC: 54C10
MSC: 54C25
MSC: 54G10
MSC: 54H11
idZBL: Zbl 1100.54026
idMR: MR2076867
.
Date available: 2009-05-05T16:44:01Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119444
.
Reference: [1] Arhangel'skii A.V.: Factorization theorems and function spaces: stability and monolithicity.Soviet Math. Dokl. 26 (1982), 177-181; Russian original in: Dokl. Akad. Nauk SSSR 265 (1982), 1039-1043. MR 0670475
Reference: [2] Blair R.L., Hager A.W.: $z$-embeddings in $\beta X\times\beta Y$.Set-Theoretic Topology, Academic Press, New York, 1977, pp.47-72. MR 0440496
Reference: [3] Comfort W.W.: Compactness-like properties for generalized weak topological sums.Pacific J. Math. 60 (1975), 31-37. Zbl 0307.54016, MR 0431088
Reference: [4] Comfort W.W., Robertson L.: Extremal phenomena in certain classes of totally bounded groups.Dissertationes Math. 272 (1988), 1-48. Zbl 0703.22002, MR 0959432
Reference: [5] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups.Pacific J. Math. 16 (1966), 483-496. Zbl 0214.28502, MR 0207886
Reference: [6] Engelking R.: General Topology.Heldermann Verlag, 1989. Zbl 0684.54001, MR 1039321
Reference: [7] Hernández C., Tkachenko M.: Subgroups of $\Bbb R$-factorizable groups.Comment. Math. Univ. Carolinae 39 (1998), 371-378. MR 1651979
Reference: [8] Hernández S.: Algebras of real-valued continuous functions in product spaces.Topology Appl. 22 (1986), 33-42. MR 0831179
Reference: [9] Noble M.: A note on $z$-closed projection.Proc. Amer. Math. Soc. 23 (1969), 73-76. MR 0246271
Reference: [10] Noble M.: Products with closed projections.Trans. Amer. Math. Soc. 140 (1969), 381-391. Zbl 0192.59701, MR 0250261
Reference: [11] Novak J.: On the Cartesian product of two compact spaces.Fund. Math. 40 (1953), 106-112. Zbl 0053.12404, MR 0060212
Reference: [12] Schepin E.V.: Real-valued functions and canonical sets in Tychonoff products and topological groups.Russian Math. Surveys 31 (1976), 19-30.
Reference: [13] Tkachenko M.: Subgroups, quotient groups and products of $\Bbb R$-factorizable groups.Topology Proc. 16 (1991), 201-231. MR 1206464
Reference: [14] Tkachenko M.: Introduction to topological groups.Topology Appl. 86 (1998), 179-231. Zbl 0955.54013, MR 1623960
Reference: [15] Tkachenko M.: $\Bbb R$-factorizable groups and subgroups of Lindelöf $P$-groups.submitted. Zbl 1039.54020
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-1_12.pdf 286.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo