Title:
|
Subgroups and products of $\Bbb R$-factorizable $P$-groups (English) |
Author:
|
Hernández, Constancio |
Author:
|
Tkachenko, Michael |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
45 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
153-167 |
. |
Category:
|
math |
. |
Summary:
|
We show that {\it every\/} subgroup of an $\Bbb R$-factorizable abelian $P$-group is topologically isomorphic to a {\it closed\/} subgroup of another $\Bbb R$-factorizable abelian $P$-group. This implies that closed subgroups of $\Bbb R$-factorizable $P$-groups are not necessarily $\Bbb R$-factorizable. We also prove that if a Hausdorff space $Y$ of countable pseudocharacter is a continuous image of a product $X=\prod_{i\in I}X_i$ of $P$-spaces and the space $X$ is pseudo-$\omega _1$-compact, then $nw(Y)\leq \aleph_0$. In particular, direct products of $\Bbb R$-factorizable $P$-groups are $\Bbb R$-factorizable and $\omega $-stable. (English) |
Keyword:
|
$P$-space |
Keyword:
|
$P$-group |
Keyword:
|
pseudo-$\omega _1$-compact |
Keyword:
|
$\omega $-stable |
Keyword:
|
$\Bbb R$-factorizable |
Keyword:
|
$\aleph _0$-bounded |
Keyword:
|
pseudocharacter |
Keyword:
|
cellularity |
Keyword:
|
$\aleph_ 0$-box topology |
Keyword:
|
$\sigma $-product |
MSC:
|
22A05 |
MSC:
|
54A25 |
MSC:
|
54C10 |
MSC:
|
54C25 |
MSC:
|
54G10 |
MSC:
|
54H11 |
idZBL:
|
Zbl 1100.54026 |
idMR:
|
MR2076867 |
. |
Date available:
|
2009-05-05T16:44:01Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119444 |
. |
Reference:
|
[1] Arhangel'skii A.V.: Factorization theorems and function spaces: stability and monolithicity.Soviet Math. Dokl. 26 (1982), 177-181; Russian original in: Dokl. Akad. Nauk SSSR 265 (1982), 1039-1043. MR 0670475 |
Reference:
|
[2] Blair R.L., Hager A.W.: $z$-embeddings in $\beta X\times\beta Y$.Set-Theoretic Topology, Academic Press, New York, 1977, pp.47-72. MR 0440496 |
Reference:
|
[3] Comfort W.W.: Compactness-like properties for generalized weak topological sums.Pacific J. Math. 60 (1975), 31-37. Zbl 0307.54016, MR 0431088 |
Reference:
|
[4] Comfort W.W., Robertson L.: Extremal phenomena in certain classes of totally bounded groups.Dissertationes Math. 272 (1988), 1-48. Zbl 0703.22002, MR 0959432 |
Reference:
|
[5] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups.Pacific J. Math. 16 (1966), 483-496. Zbl 0214.28502, MR 0207886 |
Reference:
|
[6] Engelking R.: General Topology.Heldermann Verlag, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[7] Hernández C., Tkachenko M.: Subgroups of $\Bbb R$-factorizable groups.Comment. Math. Univ. Carolinae 39 (1998), 371-378. MR 1651979 |
Reference:
|
[8] Hernández S.: Algebras of real-valued continuous functions in product spaces.Topology Appl. 22 (1986), 33-42. MR 0831179 |
Reference:
|
[9] Noble M.: A note on $z$-closed projection.Proc. Amer. Math. Soc. 23 (1969), 73-76. MR 0246271 |
Reference:
|
[10] Noble M.: Products with closed projections.Trans. Amer. Math. Soc. 140 (1969), 381-391. Zbl 0192.59701, MR 0250261 |
Reference:
|
[11] Novak J.: On the Cartesian product of two compact spaces.Fund. Math. 40 (1953), 106-112. Zbl 0053.12404, MR 0060212 |
Reference:
|
[12] Schepin E.V.: Real-valued functions and canonical sets in Tychonoff products and topological groups.Russian Math. Surveys 31 (1976), 19-30. |
Reference:
|
[13] Tkachenko M.: Subgroups, quotient groups and products of $\Bbb R$-factorizable groups.Topology Proc. 16 (1991), 201-231. MR 1206464 |
Reference:
|
[14] Tkachenko M.: Introduction to topological groups.Topology Appl. 86 (1998), 179-231. Zbl 0955.54013, MR 1623960 |
Reference:
|
[15] Tkachenko M.: $\Bbb R$-factorizable groups and subgroups of Lindelöf $P$-groups.submitted. Zbl 1039.54020 |
. |