Previous |  Up |  Next

Article

Title: Spaces with countable $sn$-networks (English)
Author: Ying, Ge
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 1
Year: 2004
Pages: 169-176
.
Category: math
.
Summary: In this paper, we prove that a space $X$ is a sequentially-quotient $\pi$-image of a metric space if and only if $X$ has a point-star $sn$-network consisting of $cs^*$-covers. By this result, we prove that a space $X$ is a sequentially-quotient $\pi$-image of a separable metric space if and only if $X$ has a countable $sn$-network, if and only if $X$ is a sequentially-quotient compact image of a separable metric space; this answers a question raised by Shou Lin affirmatively. We also obtain some results on spaces with countable $sn$-networks. (English)
Keyword: separable metric space
Keyword: sequentially-quotient ($\pi$
Keyword: compact) mapping
Keyword: point-star $sn$-network
Keyword: $cs*$-cover
MSC: 54C05
MSC: 54C10
MSC: 54D65
MSC: 54E40
idZBL: Zbl 1098.54025
idMR: MR2076868
.
Date available: 2009-05-05T16:44:06Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119445
.
Reference: [1] Engelking R.: General Topology.Polish Scientific Publishers, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [2] Foged L.: Characterizations of $\aleph$-spaces.Pacific J. Math. 110 (1984), 59-63. Zbl 0542.54030, MR 0722737
Reference: [3] Franklin S.P.: Spaces in which sequence suffice.Fund. Math. 57 (1965), 107-115. MR 0180954
Reference: [4] Ge Y.: On $sn$-metrizable spaces.Acta Math. Sinica 45 (2002), 355-360 (in Chinese). Zbl 1010.54027, MR 1928146
Reference: [5] Gruenhage G.: Generalized metric spaces.in: K. Kunen and J.E. Vaughan, Eds., Handbook of Set-Theoretic Topology, Amsterdam, North-Holland, pp.423-501. Zbl 0794.54034, MR 0776629
Reference: [6] Lin S.: On normal separable $\aleph$-space.Questions Answers Gen. Topology 5 (1987), 249-254. MR 0917881
Reference: [7] Lin S.: A survey of the theory of $\aleph$-space.Questions Answers Gen. Topology 8 (1990), 405-419. MR 1065288
Reference: [8] Lin S.: Generalized Metric Spaces and Mappings.Chinese Science Press, Beijing, 1995 (in Chinese). MR 1375020
Reference: [9] Lin S.: A note on the Arens' spaces and sequential fan.Topology Appl. 81 (1997), 185-196. MR 1485766
Reference: [10] Lin S., Yan P.: Sequence-covering maps of metric spaces.Topology Appl. 109 (2001), 301-314. Zbl 0966.54012, MR 1807392
Reference: [11] Lin S., Yan P.: On sequence-covering compact mappings.Acta Math. Sinica 44 (2001), 175-182 (in Chinese). Zbl 1005.54031, MR 1819992
Reference: [12] Lin S.: Point-star networks and $\pi$-mappings.Selected Papers of Chinese Topology Symposium, Chinese Fuzhou Teachers University Publ., Chinese Fuzhou, 2001 (in Chinese).
Reference: [13] Michael E.A.: $\aleph_0$-spaces.J. Math. Mech. 15 (1966), 983-1002. MR 0206907
Reference: [14] O'Meara P.: A new class of topological spaces.Univ. of Alberta Dissertation, 1966.
Reference: [15] O'Meara P.: On paracompactness in function spaces with the compact-open topology.Proc. Amer. Math. Soc. 29 (1971), 183-189. Zbl 0214.21105, MR 0276919
Reference: [16] Ponomarev V.I.: Axioms of countability and continuous mappings.Bull. Pol. Acad. Math. 8 (1960), 127-133 (in Russian). MR 0116314
Reference: [17] Tanaka Y.: $\sigma$-Hereditarily closure-preserving $k$-networks and $g$-metrizability.Proc. Amer. Math. Soc. 112 (1991), 283-290. Zbl 0770.54031, MR 1049850
Reference: [18] Tanaka Y.: Theory of $k$-networks.Questions Answers Gen. Topology 12 (1994), 139-164. Zbl 0833.54015, MR 1288740
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-1_13.pdf 206.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo