Previous |  Up |  Next

Article

Title: On weakly projective and weakly injective modules (English)
Author: Saleh, Mohammad
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 3
Year: 2004
Pages: 389-402
.
Category: math
.
Summary: The purpose of this paper is to further the study of weakly injective and weakly projective modules as a generalization of injective and projective modules. For a locally q.f.d. module $M$, there exists a module $K\in \sigma [M]$ such that $K\oplus N$ is weakly injective in $\sigma [M]$, for any $N\in \sigma [M]$. Similarly, if $M$ is projective and right perfect in $\sigma [M]$, then there exists a module $K\in \sigma [M]$ such that $K\oplus N$ is weakly projective in $\sigma [M]$, for any $N\in \sigma [M]$. Consequently, over a right perfect ring every module is a direct summand of a weakly projective module. For some classes $\Cal M$ of modules in $\sigma [M]$, we study when direct sums of modules from $\Cal M$ satisfy property $\Bbb P$ in $\sigma [M]$. In particular, we get characterizations of locally countably thick modules, a generalization of locally q.f.d. modules. (English)
Keyword: tight
Keyword: weakly tight
Keyword: weakly injective
Keyword: weakly projective
Keyword: countably thick
Keyword: locally q.f.d.
Keyword: weakly semisimple
MSC: 16D40
MSC: 16D50
MSC: 16D60
MSC: 16D70
MSC: 16D90
MSC: 16P40
idZBL: Zbl 1101.16004
idMR: MR2103135
.
Date available: 2009-05-05T16:46:03Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119468
.
Reference: [1] Albu T., Nastasescu C.: Relative Finiteness in Module Theory.Marcel Dekker, 1984. Zbl 0556.16001, MR 0749933
Reference: [2] Al-Huzali A., Jain S.K., López-Permouth S.R.: Rings whose cyclics have finite Goldie dimension.J. Algebra 153 (1992), 37-40. MR 1195405
Reference: [3] Berry D.: Modules whose cyclic submodules have finite dimension.Canad. Math. Bull. 19 (1976), 1-6. Zbl 0335.16025, MR 0417244
Reference: [4] Brodskii G., Saleh M., Thuyet L., Wisbauer R.: On weak injectivity of direct sums of modules.Vietnam J. Math. 26 (1998), 121-127. MR 1684323
Reference: [5] Brodskii G.: Denumerable distributivity, linear compactness and the AB5$^{\ast }$ condition in modules.Russian Acad. Sci. Dokl. Math. 53 (1996), 76-77.
Reference: [6] Brodskii G.: The Grothendieck condition AB5$^{\ast }$ and generalizations of module distributivity.Russ. Math. 41 (1997), 1-11. MR 1480764
Reference: [7] Camillo V.P.: Modules whose quotients have finite Goldie dimension.Pacific J. Math. 69 (1977), 337-338. Zbl 0356.13003, MR 0442020
Reference: [8] Dung N.V., Huynh D.V., Smith P.F., Wisbauer R.: Extending Modules.Pitman, London, 1994. Zbl 0841.16001
Reference: [9] Dhompong S., Sanwong J., Plubtieng S., Tansee H.: On modules whose singular subgenerated modules are weakly injective.Algebra Colloq. 8 (2001), 227-236. MR 1838519
Reference: [10] Goel V.K., Jain S.K.: $\pi $-injective modules and rings whose cyclic modules are $\pi $-injective.Comm. Algebra 6 (1978), 59-73. MR 0491819
Reference: [11] Golan J.S., López-Permouth S.R.: QI-filters and tight modules.Comm. Algebra 19 (1991), 2217-2229. MR 1123120
Reference: [12] Jain S.K., López-Permouth S.R.: Rings whose cyclics are essentially embeddable in projective modules.J. Algebra 128 (1990), 257-269. MR 1031920
Reference: [13] Jain S.K., López-Permouth S.R., Risvi T.: A characterization of uniserial rings via continuous and discrete modules.J. Austral. Math. Soc., Ser. A 50 (1991), 197-203. MR 1094917
Reference: [14] Jain S.K., López-Permouth S.R., Saleh M.: On weakly projective modules.in: Ring Theory, Proceedings, OSU-Denison conference 1992, World Scientific Press, New Jersey, 1993, pp.200-208. MR 1344231
Reference: [15] Jain S.K., López-Permouth S.R., Oshiro K., Saleh M.: Weakly projective and weakly injective modules.Canad. J. Math. 34 (1994), 972-981. MR 1295126
Reference: [16] Jain S.K., López-Permouth S.R., Singh S.: On a class of $QI$-rings.Glasgow J. Math. 34 (1992), 75-81. MR 1145633
Reference: [17] Jain S.K., López-Permouth S.R.: A survey on the theory of weakly injective modules.in: Computational Algebra, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1994, pp.205-233. MR 1245954
Reference: [18] Kurshan A.P.: Rings whose cyclic modules have finitely generated socle.J. Algebra 14 (1970), 376-386. Zbl 0199.35503, MR 0260780
Reference: [19] López-Permouth S.R.: Rings characterized by their weakly injective modules.Glasgow Math. J. 34 (1992), 349-353. MR 1181777
Reference: [20] Malik S., Vanaja N.: Weak relative injective $M$-subgenerated modules.Advances in Ring Theory, Birkhäuser, Boston, 1997, pp.221-239. Zbl 0934.16002, MR 1602677
Reference: [21] Mohamed S., Muller B., Singh S.: Quasi-dual continuous modules.J. Austral. Math. Soc., Ser. A 39 (1985), 287-299. MR 0802719
Reference: [22] Mohamed S., Muller B, HASH(0xa277a48): Continuous and Discrete Modules.Cambridge University Press, 1990. MR 1084376
Reference: [23] Saleh M.: A note on tightness.Glasgow Math. J. 41 (1999), 43-44. Zbl 0923.16003, MR 1689655
Reference: [24] Saleh M., Abdel-Mohsen A.: On weak injectivity and weak projectivity.in: Proceedings of the Mathematics Conference, World Scientific Press, New Jersey, 2000, pp.196-207. Zbl 0985.16002, MR 1773029
Reference: [25] Saleh M., Abdel-Mohsen A.: A note on weak injectivity.Far East J. Math. Sci. 11 (2003), 199-206. Zbl 1063.16004, MR 2020503
Reference: [26] Saleh M.: On q.f.d. modules and q.f.d. rings.Houston J. Math., to appear. Zbl 1070.16002, MR 2083867
Reference: [27] Sanh N.V., Shum K.P., Dhompongsa S., Wongwai S.: On quasi-principally injective modules.Algebra Colloq. 6 (1999), 296-276. Zbl 0949.16003, MR 1809646
Reference: [28] Sanh N.V., Dhompongsa S., Wongwai S.: On generalized q.f.d. modules and rings.Algebra and Combinatorics, Springer-Verlag, 1999, pp.367-272. MR 1733193
Reference: [29] Wisbauer R.: Foundations of Module and Ring Theory.Gordon and Breach, 1991. Zbl 0746.16001, MR 1144522
Reference: [30] Zhou Y.: Notes on weakly semisimple rings.Bull. Austral. Math. Soc. 52 (1996), 517-525. MR 1358705
Reference: [31] Zhou Y.: Weak injectivity and module classes.Comm. Algebra 25 (1997), 2395-2407. Zbl 0934.16004, MR 1459568
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-3_2.pdf 243.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo