Previous |  Up |  Next

Article

Title: $\omega_1$-generated uniserial modules over chain rings (English)
Author: Žemlička, Jan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 3
Year: 2004
Pages: 403-415
.
Category: math
.
Summary: The purpose of this paper is to provide a criterion of an occurrence of uncountably generated uniserial modules over chain rings. As we show it suffices to investigate two extreme cases, nearly simple chain rings, i.e. chain rings containing only three two-sided ideals, and chain rings with ``many'' two-sided ideals. We prove that there exists an $\omega_{1}$-generated uniserial module over every non-artinian nearly simple chain ring and over chain rings containing an uncountable strictly increasing (resp. decreasing) chain of right (resp. two-sided) ideals. As a consequence we describe right steady serial rings. (English)
Keyword: chain rings
Keyword: serial rings
Keyword: uniserial modules
MSC: 16D20
MSC: 16D25
MSC: 16D60
MSC: 16D80
MSC: 16L30
MSC: 16P70
idZBL: Zbl 1101.16014
idMR: MR2103136
.
Date available: 2009-05-05T16:46:09Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119469
.
Reference: [BBT] Bessenrodt Ch., Brungs H.H., Törner G.: Right Chain Rings. Part 1.Schriftenreihe des Fachbereich Mathematik Universität Duisburg (1990).
Reference: [C] Cohn P.M.: Free Rings and Their Relations.Academic Press Conder, New York (1971). Zbl 0232.16003, MR 0371938
Reference: [D1] Dubrovin N.I.: An example of a chain prime ring with nilpotent elements.Math. USSR, Sb. 48 (1984), 437-444. Zbl 0543.16003, MR 0691988
Reference: [D2] Dubrovin N.I.: Chain domains.Moscow Univ. Math. Bull. 35 2 (1980), 56-60. Zbl 0456.16001, MR 0570590
Reference: [EGT] Eklof P.C., Goodearl K.R., Trlifaj J.: Dually slender modules and steady rings.Forum Math. (1997), 9 61-74. Zbl 0866.16003, MR 1426454
Reference: [F] Facchini A.: Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules.Birkhäuser Basel (1998). Zbl 0930.16001, MR 1634015
Reference: [FS] Fuchs L., Salce L.: Modules over Valuation Domains.Marcel Dekker New York and Basel (1985). Zbl 0578.13004, MR 0786121
Reference: [P1] Puninski G.: Some model theory over nearly simple uniserial domain and decomposition of serial modules.J. Pure Appl. Algebra (2001), 21 319-337. MR 1852123
Reference: [P2] Puninski G.: Some model theory over an exceptional uniserial rings and decomposition of serial modules.J. London Math. Soc., Ser. II. (2000), 64 2 311-326. MR 1853453
Reference: [P3] Puninski G.E., Tuganbaev A.A.: Rings and Modules (Kol'ca i moduli).Moskva, 1998 (in Russian). MR 1641739
Reference: [P4] Puninski G.: Serial Rings.Kluwer Academic Publ. Dordrecht (2001). Zbl 1032.16001, MR 1855271
Reference: [T] Trlifaj J.: Almost $\star$-modules need not be finitely generated.Comm. Algebra (1993), 21 2453-2462. MR 1218507
Reference: [Z] Žemlička J.: Steadiness is tested by a single module.Contemporary Mathematics (2001), 273 301-308. Zbl 0988.16003, MR 1817172
Reference: [ZT] Žemlička J., Trlifaj J.: Steady ideals and rings.Rend. Sem. Mat. Univ. Padova (1997), 98 161-172. MR 1492975
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-3_3.pdf 252.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo