Previous |  Up |  Next

Article

Title: Some permanence results of properties of Banach spaces (English)
Author: Emmanuele, G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 3
Year: 2004
Pages: 491-497
.
Category: math
.
Summary: Using some known lifting theorems we present three-space property type and permanence results; some of them seem to be new, whereas other are improvements of known facts. (English)
Keyword: three-space property type theorems
Keyword: permanence results
MSC: 46B03
MSC: 46B20
idZBL: Zbl 1103.46004
idMR: MR2103143
.
Date available: 2009-05-05T16:46:49Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119476
.
Reference: [1] Diestel J.: A survey of results related to Dunford-Pettis property.Contemp. Math., vol 2, Amer. Math. Soc., Providence, R.I., 1980, pp.15-60. MR 0621850
Reference: [2] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Math. 92, Springer, New York, 1984. MR 0737004
Reference: [3] Diestel J., Morrison T.J.: The Radon-Nikodym Property for the space of operators.Math. Nachr. 92 (1979), 7-12. Zbl 0444.46021, MR 0563569
Reference: [4] Emmanuele G.: The (BD) property in $L^1(\mu,E)$.Indiana Univ. Math. J. 36.1 (1987), 229-230. MR 0877000
Reference: [5] Emmanuele G.: On the Banach spaces with the Property $(V^*)$ of Pelczynski, II.Ann. Mat. Pura Appl. 160 (1991), 163-170. Zbl 0759.46018, MR 1163206
Reference: [6] Emmanuele G.: Some more Banach spaces with the (NRNP).Le Matematiche (Catania) 48 (1993), 213-218. Zbl 0828.46008, MR 1320664
Reference: [7] Emmanuele G., Rao T.S.S.R.K.: Spaces of Bochner integrable functions and spaces of representable operators as ${\Cal U}$-ideals.Quart. J. Math. Oxford 48 (1997), 467-478. MR 1604823
Reference: [8] Freedman W.: An Alternative Dunford-Pettis Property.Studia Math. 125 (1997), 143-159. Zbl 0897.46009, MR 1455629
Reference: [9] Godefroy G., Saab P.: Quelques espaces de Banach ayant les propriétés $(V)$ ou $(V^*)$ de A. Pelcynski.C.R. Acad. Sci. Paris 303 (1986), 503-506. Zbl 0602.46014, MR 0865871
Reference: [10] Gonzalez M., Onieva V.M.: Lifting results for sequences in Banach spaces.Math. Proc. Cambridge Phil. Soc. 105 (1989), 117-121. Zbl 0633.46025, MR 0966145
Reference: [11] Grothendieck A.: Sur les applications faiblement compactes d'espaces du type $C(K)$.Canad. J. Math. 5 (1953), 129-173. MR 0058866
Reference: [12] Harmand P., Werner D., Werner W.: M-ideals in Banach Spaces and Banach Algebras.Lectures Notes in Math. 1547, Springer, Berlin, 1993. Zbl 0789.46011, MR 1238713
Reference: [13] Kalton N.J., Pelczynski A.: Kernels of surjections from ${\Cal L}_1$-spaces with an application to Sidon sets.Math. Ann. 309 (1997), 135-158. Zbl 0901.46008, MR 1467651
Reference: [14] Kaufman R., Petrakis M., Riddle L.H., Uhl J.J.: Nearly representable operators.Trans. Amer. Math. Soc. 312 (1989), 315-333. Zbl 0673.47016, MR 0951887
Reference: [15] Leung D.H.: A Gelfand-Phillips Property with respect to the Weak Topology.Math. Nachr. 149 (1990), 177-181. Zbl 0765.46007, MR 1124803
Reference: [16] Li D.: Lifting Properties for Some Quotients of $L^1$-Spaces and Other Spaces $L$-Summand in Their Bidual.Math. Z. 199 (1988), 321-329. MR 0961814
Reference: [17] Lohman R.H.: A note on Banach spaces containing $\ell_1$.Canad. Math. Bull. 19 (1976), 365-367. Zbl 0342.46006, MR 0430748
Reference: [18] Megginson R.E.: An introduction to Banach Space Theory.Graduate Texts in Mathematics, 183, Springer, New York, 1998. Zbl 0910.46008, MR 1650235
Reference: [19] Morrison T.J.: Functional Analysis, An Introduction to Banach Space Theory.Wiley & Sons, New York, 2001. Zbl 1005.46004, MR 1885114
Reference: [20] Pelczynski A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Polish Acad. Sci. 10 (1962), 641-648. Zbl 0107.32504, MR 0149295
Reference: [21] Randrianantoanina N.: Radon-Nikodym Properties for Spaces of Compact Operators.Rev. Roumanie Math. Pures Appl. 41 (1996), 119-131. Zbl 0858.46018, MR 1404645
Reference: [22] Talagrand M.: Weakly Cauchy sequences in $L^1(E)$.Amer. J. Math. 106 (1984), 703-724. MR 0745148
Reference: [23] Talagrand M.: Quand l'espace des mesures à variation bornée est-il faiblement séquentiellement complet?.Proc. Amer. Math. Soc. 90 (1984), 285-288. Zbl 0534.46017, MR 0727251
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-3_10.pdf 204.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo