Previous |  Up |  Next

Article

Title: Note on countable unions of Corson countably compact spaces (English)
Author: Kalenda, Ondřej F. K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 3
Year: 2004
Pages: 499-507
.
Category: math
.
Summary: We show that a compact space $K$ has a dense set of $G_\delta$ points if it can be covered by countably many Corson countably compact spaces. If these Corson countably compact spaces may be chosen to be dense in $K$, then $K$ is even Corson. (English)
Keyword: Corson countably compact space
Keyword: $G_\delta$ point
Keyword: Corson compact space
Keyword: Valdivia compact space
MSC: 54D30
idZBL: Zbl 1098.54020
idMR: MR2103144
.
Date available: 2009-05-05T16:46:54Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119477
.
Reference: Argyros S., Mercourakis S.: On weakly Lindelöf Banach spaces.Rocky Mountain J. Math. 23 (1993), 395-446. Zbl 0797.46009, MR 1226181
Reference: Argyros S., Mercourakis S., Negrepontis S.: Functional analytic properties of Corson compact spaces.Studia Math. 89 (1988), 197-229. Zbl 0656.46014, MR 0956239
Reference: Gul'ko S.P.: Properties of sets that lie in $\Sigma$-products (in Russian).Dokl. Akad. Nauk SSSR 237 (1977), 3 505-508. MR 0461410
Reference: Kalenda O.: Continuous images and other topological properties of Valdivia compacta.Fund Math. 162 (1999), 2 181-192. Zbl 0989.54019, MR 1734916
Reference: Kalenda O.: A characterization of Valdivia compact spaces.Collectanea Math. 51 1 (2000), 59-81. Zbl 0949.46004, MR 1757850
Reference: Kalenda O.: Embedding of the ordinal segment $[0,ømega_1]$ into continuous images of Valdivia compacta.Comment. Math. Univ. Carolinae 40 4 (1999), 777-783. Zbl 1009.54017, MR 1756552
Reference: Kalenda O.: Valdivia compact spaces in topology and Banach space theory.Extracta Math. 15 1 (2000), 1-85. Zbl 0983.46021, MR 1792980
Reference: Kalenda O.: On the class of continuous images of Valdivia compacta.Extracta Math. 18 (2003), 1 65-80. Zbl 1159.46306, MR 1989298
Reference: Kubiś W., Uspenskij V.: A compact group which is not Valdivia compact.Proc. Amer. Math. Soc., to appear. MR 2138892
Reference: Michael E., Rudin M.E.: A note on Eberlein compacts.Pacific J. Math. 72 (1977), 2 487-495. Zbl 0345.54020, MR 0478092
Reference: Noble N.: The continuity of functions on Cartesian products.Trans. Amer. Math. Soc. 149 (1970), 187-198. Zbl 0229.54028, MR 0257987
Reference: Orihuela J.: On Weakly Lindelöf Banach spaces.Progress in Funct. Anal. K.D. Bierstedt, J. Bonet, J. Horváth, M. Maestre Elsevier Sci. Publ. B.V. (1992), 279-291. MR 1150753
Reference: Sokolov G.A.: On some classes of compact spaces lying in $\Sigma$-products.Comment. Math. Univ. Carolinae 25 (1984), 219-231. Zbl 0577.54014, MR 0768809
Reference: Valdivia M.: Resolutions of the identity in certain Banach spaces.Collectanea Math. 39 (1988), 2 127-140. Zbl 0718.46006, MR 1027683
Reference: Valdivia M.: On certain compact topological spaces.Rev. Mat. Univ. Complut. Madrid 10 1 (1997), 81-84. Zbl 0870.54025, MR 1452564
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-3_11.pdf 220.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo