Previous |  Up |  Next

Article

Title: Rings of continuous functions vanishing at infinity (English)
Author: Aliabad, A. R.
Author: Azarpanah, F.
Author: Namdari, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 3
Year: 2004
Pages: 519-533
.
Category: math
.
Summary: We prove that a Hausdorff space $X$ is locally compact if and only if its topology coincides with the weak topology induced by $C_\infty (X)$. It is shown that for a Hausdorff space $X$, there exists a locally compact Hausdorff space $Y$ such that $C_\infty(X)\cong C_\infty(Y)$. It is also shown that for locally compact spaces $X$ and $Y$, $C_\infty(X)\cong C_\infty(Y)$ if and only if $X\cong Y$. Prime ideals in $C_\infty(X)$ are uniquely represented by a class of prime ideals in $C^*(X)$. $\infty$-compact spaces are introduced and it turns out that a locally compact space $X$ is $\infty$-compact if and only if every prime ideal in $C_\infty(X)$ is fixed. The existence of the smallest $\infty$-compact space in $\beta X$ containing a given space $X$ is proved. Finally some relations between topological properties of the space $X$ and algebraic properties of the ring $C_\infty(X)$ are investigated. For example we have shown that $C_\infty(X)$ is a regular ring if and only if $X$ is an $\infty$-compact $\operatorname{P}_\infty$-space. (English)
Keyword: $\sigma $-compact
Keyword: pseudocompact
Keyword: $\infty $-compact
Keyword: $\infty $-compactification
Keyword: $\operatorname{P}_{\infty }$-space
Keyword: P-point
Keyword: regular ring
Keyword: fixed and free ideals
MSC: 54C40
MSC: 54D45
idZBL: Zbl 1097.54021
idMR: MR2103146
.
Date available: 2009-05-05T16:47:06Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119479
.
Reference: [1] Al-ezeh H., Natsheh M.A., Hussein D.: Some properties of the ring of continuous functions.Arch. Math. 51 (1988), 51-60. Zbl 0638.54017, MR 0954069
Reference: [2] Azarpanah F.: Essential ideals in $C(X)$.Period. Math. Hungar. 31 2 (1995), 105-112. Zbl 0869.54021, MR 1609417
Reference: [3] Azarpanah F., Karamzadeh O.A.S.: Algebraic characterizations of some disconnected spaces.Ital. J. Pure Appl. Math., no. 12 (2002), 155-168. Zbl 1117.54030, MR 1962109
Reference: [4] Azarpanah F., Sondararajan T.: When the family of functions vanishing at infinity is an ideal of $C(X)$.Rocky Mountain J. Math. 31.4 (2001), 1-8. MR 1895289
Reference: [5] Berberian S.K.: Baer*-rings.Springer, New York-Berlin, 1972. Zbl 0534.16011, MR 0429975
Reference: [6] Engelking R.: General Topology.PWN-Polish Scientific Publishing, 1977. Zbl 0684.54001, MR 0500780
Reference: [7] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York, 1976. Zbl 0327.46040, MR 0407579
Reference: [8] Goodearl K.R., Warfield R.B., Jr.: An Introduction to Noncommutative Noetherian Rings.Cambridge Univ. Press, Cambridge, 1989. Zbl 1101.16001, MR 1020298
Reference: [9] Kohls C.W.: Ideals in rings of continuous functions.Fund. Math. 45 (1957), 28-50. Zbl 0079.32701, MR 0102731
Reference: [10] McConnel J.C., Robson J.C.: Noncommutative Noetherian Rings.Wiley Interscience, New York, 1987. MR 0934572
Reference: [11] Namdari M.: Algebraic properties of $C_\infty(X)$.Proceeding of Abstracts of Short Communications and Poster Sessions, ICM 2002, p.85.
Reference: [12] Rudd D.: On isomorphisms between ideals in rings of continuous functions.Trans. Amer. Math. Soc. 159 (1971), 335-353. Zbl 0228.46019, MR 0283575
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-3_13.pdf 273.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo