Title:
|
Essential $P$-spaces: a generalization of door spaces (English) |
Author:
|
Osba, Emad Abu |
Author:
|
Henriksen, Melvin |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
45 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
509-518 |
. |
Category:
|
math |
. |
Summary:
|
An element $f$ of a commutative ring $A$ with identity element is called a {\it von Neumann regular element\/} if there is a $g$ in $A$ such that $f^{2}g=f$. A point $p$ of a (Tychonoff) space $X$ is called a $P$-{\it point\/} if each $f$ in the ring $C(X)$ of continuous real-valued functions is constant on a neighborhood of $p$. It is well-known that the ring $C(X)$ is von Neumann regular ring iff each of its elements is a von Neumann regular element; in which case $X$ is called a $P$-{\it space\/}. If all but at most one point of $X$ is a $P$-point, then $X$ is called an {\it essential $P$-space\/}. In earlier work it was shown that $X$ is an essential $P$-space iff for each $f$ in $C(X)$, either $f$ or $1-f$ is von Neumann regular element. Properties of essential $P$-spaces (which are generalizations of J.L. Kelley's door spaces) are derived with the help of the algebraic properties of $C(X)$. Despite its simple sounding description, an essential $P$-space is not simple to describe definitively unless its non $P$-point $\eta$ is a $G_{\delta}$, and not even then if there are infinitely many pairwise disjoint cozerosets with $\eta$ in their closure. The general case is considered and open problems are posed. (English) |
Keyword:
|
$P$-point |
Keyword:
|
$P$-space |
Keyword:
|
essential $P$-space |
Keyword:
|
door space |
Keyword:
|
$F$-space |
Keyword:
|
basically disconnected space |
Keyword:
|
space of minimal prime ideals |
Keyword:
|
$SV$-ring |
Keyword:
|
$SV$-space |
Keyword:
|
rank |
Keyword:
|
von Neumann regular ring |
Keyword:
|
von Neumann local ring |
Keyword:
|
Lindelöf space |
MSC:
|
13F30 |
MSC:
|
16A30 |
MSC:
|
16E50 |
MSC:
|
54G10 |
MSC:
|
54H13 |
idZBL:
|
Zbl 1100.54024 |
idMR:
|
MR2103145 |
. |
Date available:
|
2009-05-05T16:47:00Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119478 |
. |
Reference:
|
[AAH04] Abu Osba E., Henriksen M., Alkam O.: Combining local and von Neumann regular rings.Comm. Algebra 32 (7) (2004), 2639-2653. MR 2099923 |
Reference:
|
[B76] Blair R.: Special sets in which special sets are $z$-embedded.Canad. J. Math. 28 (1976), 673-690. MR 0420542 |
Reference:
|
[E89] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[GJ76] Gillman L., Jerison M.: Rings of continuous functions.Graduate Texts in Math. 43, Springer, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[GH54] Gillman L., Henriksen M.: Concerning rings of continuous functions.Trans. Amer. Math. Soc. 77 (1954), 340-362. Zbl 0058.10003, MR 0063646 |
Reference:
|
[HJ65] Henriksen M., Jerison M.: The space of minimal prime ideals of a commutative ring.Trans. Amer. Math. Soc. 115 (1965), 110-130. Zbl 0147.29105, MR 0194880 |
Reference:
|
[HM93] Hager A., Martinez J.: Fraction-dense algebras and spaces.Canad. J. Math. 45 (1993), 997-996. Zbl 0795.06017, MR 1239910 |
Reference:
|
[HP86] Hdeib H., Pareek C.M.: On spaces in which Lindelöf sets are closed.Questions Answers Gen. Topology 4 (1986), 3-13. Zbl 0603.54022, MR 0852948 |
Reference:
|
[HWi(a)92] Henriksen M., Wilson R.G.: When is $C(X)/P$ a valuation domain for every prime ideal $P$?.Topology Appl. 44 (1992), 175-180. MR 1173255 |
Reference:
|
[HWi(b)92] Henriksen M., Wilson R.G.: Almost discrete $SV$-spaces.Topology Appl. 46 (1992), 89-97. MR 1184107 |
Reference:
|
[HWo88] Henriksen M., Woods R.G.: Weak $P$-spaces and $L$-closed spaces.Questions Answers Gen. Topology 6 (1988), 201-207. Zbl 0683.54030, MR 1045615 |
Reference:
|
[HVW87] Henriksen M., Vermeer J., Woods R.G.: Quasi $F$-covers of Tychonoff spaces.Trans. Amer. Math. Soc. 303 (1987), 779-803. Zbl 0653.54025, MR 0902798 |
Reference:
|
[HMW03] Henriksen M., Martinez J., Woods R.G.: Spaces $X$ in which all prime z-ideals of $C(X)$ are minimal or maximal.Comment. Math. Univ. Carolinae 44 (2003), 261-294. Zbl 1098.54013, MR 2026163 |
Reference:
|
[HLMW94] Henriksen M., Larson S., Martinez J., Woods R.G.: Lattice-ordered algebras that are subdirect products of valuation domains.Trans. Amer. Math. Soc. 345 (1994), 195-221. Zbl 0817.06014, MR 1239640 |
Reference:
|
[K55] Kelley J.L.: General Topology.Van Nostrand, New York, 1955. Zbl 0518.54001, MR 0070144 |
Reference:
|
[L97] Larson S.: f-rings in which every maximal ideal contains finitely many minimal prime ideals.Comm. Algebra 25 (1997), 3859-3888. Zbl 0952.06026, MR 1481572 |
Reference:
|
[L03] Larson S.: Constructing rings of continuous functions in which there are many maximal ideals of nontrivial rank.Comm. Algebra 31 (2003), 2183-2206. MR 1976272 |
Reference:
|
[LR81] Levy R., Rice M.: Normal $P$-spaces and the $G_{\delta}$-topology.Colloq. Math. 44 (1981), 227-240. Zbl 0496.54034, MR 0652582 |
Reference:
|
[M70] Montgomery R.: Structures determined by prime ideals of rings of functions.Trans. Amer. Math. Soc. 147 (1970), 367-380. Zbl 0222.54014, MR 0256174 |
Reference:
|
[N69] Noble N.: Products with closed projections.Trans. Amer. Math. Soc. 140 (1969), 381-391. Zbl 0192.59701, MR 0250261 |
Reference:
|
[Wa74] Walker R.: The Stone-Čech Compactification.Springer, New York, 1974. Zbl 0292.54001, MR 0380698 |
Reference:
|
[We75] Weir M.: Hewitt-Nachbin Spaces.North Holland Publishing Co., Amsterdam, 1975. Zbl 0314.54002, MR 0514909 |
. |