Previous |  Up |  Next

Article

Keywords:
Menger property; Hurewicz property; property $\operatorname{Split}(\Lambda, \Lambda )$; semifilter; multifunction; small cardinals; additivity number
Summary:
In this paper we develop the semifilter approach to the classical Menger and Hurewicz properties and show that the small cardinal $\frak g$ is a lower bound of the additivity number of the $\sigma$-ideal generated by Menger subspaces of the Baire space, and under $\frak u < \frak g$ every subset $X$ of the real line with the property $\operatorname{Split} (\Lambda ,\Lambda )$ is Hurewicz, and thus it is consistent with ZFC that the property $\operatorname{Split} (\Lambda ,\Lambda )$ is preserved by unions of less than $\frak b$ subsets of the real line.
References:
[1] Blass A.: Combinatorial cardinal characteristics of the continuum. in Handbook of Set Theory (M. Foreman et. al., Eds.), to appear. MR 2768685
[2] Bukovský L., Halež J.: On Hurewicz properties. Topology Appl. 132 (2003), 71-79. MR 1990080
[3] Blass A., Mildenberger H.: On the cofinality of ultrapowers. J. Symbolic Logic 74 (1999), 727-736. MR 1777781 | Zbl 0930.03060
[4] Bartoszyński T., Shelah S., Tsaban B.: Additivity properties of topological diagonalizations. J. Symbolic Logic 68 (2003), 1254-1260. MR 2017353 | Zbl 1071.03031
[5] Bartoszyński T., Tsaban B.: Hereditary Topological Diagonalizations and the Menger-Hurewicz Conjectures. Proc. Amer. Math. Soc., to appear; http://arxiv.org/abs/math.LO/0208224 MR 2176030
[6] Banakh T., Zdomsky L.: Coherence of semifilters. submitted; http://www.franko.lviv.ua/faculty/mechmat/ Departments/Topology/booksite.html.
[7] Chaber J., Pol R.: A remark on Fremlin-Miller theorem concerning the Menger property and Michael concentrated sets. preprint.
[8] Gerlits J., Nagy Zs.: Some properties of $C(X)$, I. Topology Appl. 14 2 (1982), 151-163. MR 0667661 | Zbl 0503.54020
[9] Hurewicz W.: Über Folgen stetiger Funktionen. Fund. Math. 9 (1927), 193-204.
[10] Just W., Miller A.W., Scheepers M., Szeptycki P.J.: The combinatorics of open covers II. Topology Appl. 73 (1996), 241-266. MR 1419798 | Zbl 0870.03021
[11] Rogers C.A., Jayne J.E.: $K$-analytic Sets. in Analytic Sets (C.A. Rogers et al., Eds.), Academic Press, 1980, pp.1-179. Zbl 0589.54047
[12] Kechris A.: Classical Descriptive Set Theory. Graduate Texts in Math. 156, Springer, 1995. MR 1321597 | Zbl 0819.04002
[13] Laflamme C.: Equivalence of families of functions on natural numbers. Trans. Amer. Math. Soc. 330 (1992), 307-319. MR 1028761
[14] Laflamme C., Leary C.C.: Filter games on $ømega$ and the dual ideal. Fund. Math. 173 (2002), 159-173. Zbl 0998.03038
[15] Menger K.: Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte. Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie) 133 (1924), 421-444.
[16] Sakai M.: Weak Fréchet-Urysohn property in function spaces. preprint, 2004.
[17] Scheepers M.: Combinatorics of open covers I: Ramsey Theory. Topology Appl. 69 (1996), 31-62. MR 1378387 | Zbl 0848.54018
[18] Talagrand M.: Filtres: Mesurabilité, rapidité, propriété de Baire forte. Studia Math. 74 (1982), 283-291. MR 0683750
[19] Todorcevic S.: Topics in Topology. Lecture Notes in Math. 1652, Springer, Berlin, 1997. MR 1442262 | Zbl 0953.54001
[20] SPM Bulletin 9 (B. Tsaban, Ed.), http://arxiv.org/abs/math.GN/0406411</b>
[21] Tsaban B.: The combinatorics of splittability. Ann. Pure Appl. Logic 129 (2004), 107-130; http://arxiv.org/abs/math.GN/0307225 MR 2078361 | Zbl 1067.03055
[22] Tsaban B.: The Hurewicz covering property and slaloms in the Baire space. Fund. Math. 181 (2004), 273-280; http://arxiv.org/abs/math.GN/0301085 MR 2099604 | Zbl 1056.54028
[23] Tsaban B.: Selection principles in mathematics: A milestone of open problems. Note Math. 22 2 (2003/2004), 179-208; http://arxiv.org/abs/math.GN/0312182 MR 2112739
[24] Tsaban B.: Some new directions in infinite-combinatorial topology. to appear in Topics in Set Theory and its Applications (J. Bagaria and S. Todorcevic, Eds.), Birkhäuser, 2005; http://arxiv.org/abs/math.GN/0409069 MR 2267150 | Zbl 1113.54002
[25] Vaughan J.: Small uncountable cardinals and topology. in Open Problems in Topology (J. van Mill, G.M. Reed, Eds.), Elsevier Sci. Publ., Amsterdam, 1990, pp.197-216. MR 1078636
Partner of
EuDML logo