Previous |  Up |  Next

Article

Keywords:
impulsive differential inclusions; lower and upper solution; existence; nonoscillatory; oscillatory; fixed point
Summary:
In this paper we discuss the existence of oscillatory and nonoscillatory solutions of first order impulsive differential inclusions. We shall rely on a fixed point theorem of Bohnenblust-Karlin combined with lower and upper solutions method.
References:
[1] Agarwal R.P., Grace S.R., O'Regan D.: Oscillation Theory for Second Order Dynamic Equations. Series in Mathematical Analysis and Applications, Taylor & Francis, Ltd., London, 2003. MR 1965832 | Zbl 1043.34032
[2] Agarwal R.P., Grace S.R., O'Regan D.: On nonoscillatory solutions of differential inclusions. Proc. Amer. Math. Soc. 131 1 (2003), 129-140. MR 1929032 | Zbl 1009.47052
[3] Agarwal R.P., Grace S.R., O'Regan D.: Oscillation criteria for sublinear and superlinear second order differential inclusions. Mem. Differential Equations Math. Phys. 28 (2003), 1-12. MR 1986714 | Zbl 1059.34008
[4] Bainov D.D., Simeonov P.S.: Systems with Impulse Effect. Ellis Horwood Ltd., Chichister, 1989. MR 1010418 | Zbl 0714.34083
[5] Bainov D., Simeonov P.: Oscillations Theory of Impulsive Differential Equations. International Publications Orlando, Florida, 1998. MR 1459713
[6] Benchohra M., Boucherif A.: Initial value problems for impulsive differential inclusions of first order. Differential Equations Dynam. Systems 8 (2000), 51-66. MR 1858768 | Zbl 0988.34005
[7] Benchohra M., Henderson J., Ntouyas S.K.: On first order impulsive differential inclusions with periodic boundary conditions. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 9 3 (2002), 417-427. MR 1897802 | Zbl 1017.34008
[8] Benchohra M., Ntouyas S.K.: The lower and upper solutions method for first order differential inclusions with nonlinear boundary conditions. J. Inequal. Pure Appl. Math. 3 (2002), 1 Article 14, 8 pp. MR 1888929 | Zbl 1003.34013
[9] Benchohra M., Henderson J., Ntouyas S.K., Ouahab A.: Upper and lower solutions method for first order impulsive differential inclusions with nonlinear boundary conditions. Comput. Math. Appl. 47 (2004), 1069-1078. MR 2060337 | Zbl 1068.34009
[10] Bohnenblust H.F., Karlin S.: On a theorem of Ville. Contributions to the theory of games. pp.155-160, Annals of Mathematics Studies, no. 24. Princeton University Press, Princeton, N.J., 1950. MR 0041415
[11] Deimling K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York, 1992. MR 1189795 | Zbl 0820.34009
[12] Erbe L.H., Kong Q.K., Zhang B.G.: Oscillation Theory for Functional Differential Equations. Marcel Dekker, New York, 1995. MR 1309905 | Zbl 0821.34067
[13] Graef J.R., Karsai J.: On the oscillation of impulsively damped halflinear oscillators. Proc. Sixth Colloquium Qual. Theory Differential Equations, Electron. J. Qual. Theory Differential Equations no. 14 (2000), 1-12. MR 1798664 | Zbl 0971.34022
[14] Graef J.R., Karsai J.: Oscillation and nonoscillation in nonlinear impulsive systems with increasing energy. in Proceeding of the Third International Conference on Dynamical systems and Differential Equations, Discrete Contin. Dynam. Syst. 7 (2000), 161-173. MR 1798664
[15] Graef J.R., Karsai J., Yang B.: Nonoscillation results for nonlinear impulsive systems with nondecreasing energy. Dyn. Contin. Discrete Impuls. Systems, to appear.
[16] Gyori I., Ladas G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford, 1991. MR 1168471
[17] Hu Sh., Papageorgiou N.: Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, Boston, London, 1997. MR 1485775 | Zbl 0943.47037
[18] Ladde G.S., Lakshmikantham V., Zhang B.G.: Oscillation Theory for Differential Equations with Deviating Arguments. Marcel Dekker, New York, 1987. MR 1017244
[19] Lasota A., Opial Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. MR 0196178 | Zbl 0151.10703
[20] Lakshmikantham V., Bainov D.D., Simeonov P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989. MR 1082551 | Zbl 0719.34002
[21] Samoilenko A.M., Perestyuk N.A.: Impulsive Differential Equations. World Scientific, Singapore, 1995. MR 1355787
[22] Yong-shao C., Wei-zhen F.: Oscillation of second order nonlinear ODE with impulses. J. Math. Anal. Appl. 20 (1997), 150-169. MR 1449514
[23] Zeidler E.: Nonlinear Functional Analysis and Applications, Fixed Point Theorems. Springer, New York, 1986. MR 0816732
Partner of
EuDML logo