Previous |  Up |  Next

Article

Keywords:
nonlinear programming problem; $r$-convex transformability; sufficiency; the Karush-Kuhn-Tucker conditions
Summary:
We show that for $r$-convex transformable nonlinear programming problems the Karush-Kuhn-Tucker necessary optimality conditions are also sufficient and we provide a method of solving such problems with the aid of associated $r$-convex ones.
References:
[1] Antczak T.: $(p,r)$-invex sets and functions. J. Math.Anal. Appl. 263 (2001), 355-379. MR 1866053 | Zbl 1051.90018
[2] Antczak T.: Lipschitz $r$-invex functions and nonsmooth programming. Numer. Funct. Anal. Optim. 23 (2002), 3-4 265-283. MR 1914496 | Zbl 1103.49303
[3] Avriel M.: $r$-convex functions. Math. Programming 2 (1972), 309-323. MR 0301151 | Zbl 0249.90063
[4] Avriel M., Diewert W.E., Schaible S., Zang I.: Generalized Concavity. Plenum Press, New York, 1988. MR 0927084 | Zbl 0679.90029
[5] Bazaraa M.S., Sherali H.D., Shetty C.M.: Nonlinear Programming. Theory and Algorithms. J. Wiley, New York, 1993. MR 2218478 | Zbl 1140.90040
[6] Craven B.D.: Relationships between invex properties. in: Recent Trends in Optimization Theory, Agrawal R.P., Ed., World Scientific, Singapore, 1995. MR 1373901
[7] Galewski M.: On some connection between invex and convex problems in nonlinear programming. Control and Cybernetics 30 1 (2001), 11-22. Zbl 1027.90109
[8] Galewski M.: A note on invex problems with nonnegative variable. European J. Oper. Res. 163 2 (2005), 565-568. MR 2106081 | Zbl 1105.90061
[9] Hanson M.A., Mond B.: Convex transformable programming problems and invexity. J. Inform. Optim. Sci. 8 2 (1987), 201-207. MR 0918248 | Zbl 0641.90070
[10] Hiriart-Urruty J.B.: Refinements of necessary optimality conditions in nondifferentiable programming. Appl. Math. Optim. 5 (1979), 63-82. MR 0526428 | Zbl 0389.90088
[11] Martin D.H.: The essence of invexity. J. Optim. Theory Appl. 47 (1985), 65-76. MR 0802390 | Zbl 0552.90077
Partner of
EuDML logo