Previous |  Up |  Next

Article

Title: Medial modes and rectangular algebras (English)
Author: Zamojska-Dzienio, Anna
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 1
Year: 2006
Pages: 21-34
.
Category: math
.
Summary: Medial modes, a natural generalization of normal bands, were investigated by P\l onka. Rectangular algebras, a generalization of rectangular bands (diagonal modes) were investigated by Pöschel and Reichel. In this paper we show that each medial mode embeds as a subreduct into a semimodule over a certain ring, and that a similar theorem holds for each Lallement sum of cancellative modes over a medial mode. Similar results are obtained for rectangular algebras. The paper generalizes earlier results of A. Romanowska, J.D.H. Smith and A. Zamojska-Dzienio. (English)
Keyword: modes (idempotent and entropic algebras)
Keyword: cancellative modes
Keyword: sums of algebras
Keyword: embeddings
Keyword: semimodules over semirings
Keyword: idempotent subreducts of semimodules
MSC: 03C05
MSC: 08A05
MSC: 08A40
MSC: 08C15
MSC: 16Y60
idZBL: Zbl 1138.08001
idMR: MR2223964
.
Date available: 2009-05-05T16:55:17Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119571
.
Reference: [1] Ježek J., Kepka T.: Medial Groupoids.Rozpravy ČSAV, Rada Mat. Přírod. Věd. 93 2 (1983), 93 pp. MR 0734873
Reference: [2] Kearnes K.: Semilattice modes I: the associated semiring.Algebra Universalis 34 (1995), 220-272. Zbl 0848.08005, MR 1348951
Reference: [3] Kuras J.: Application of Agassiz Systems to Representation of Sums of Equationally Defined Classes of Algebras (in Polish).Ph.D. Thesis, M. Kopernik University, Toruń, 1985.
Reference: [4] Płonka J.: Diagonal algebras.Fund. Math. 58 (1966), 309-321. MR 0194378
Reference: [5] Płonka J.: On a method of construction of abstract algebra.Fund. Math. 61 (1967), 183-189. MR 0225701
Reference: [6] Płonka J.: A representation theorem for idempotent medial algebras.Fund. Math. 61 (1967), 191-198. MR 0225702
Reference: [7] Płonka J., Romanowska A.B.: Semilattice sums.in Universal Algebra and Quasigroup Theory (eds. A.B. Romanowska and J.D.H. Smith), Heldermann, Berlin, 1992, pp.123-158. MR 1191225
Reference: [8] Pöschel R., Reichel M.: Projection algebras and rectangular algebras.in General Algebra and Applications (eds. K. Denecke and H.-J. Vogel), Heldermann, Berlin, 1993, pp.180-194. MR 1209898
Reference: [9] Romanowska A.B., Smith J.D.H.: Modal Theory.Heldermann, Berlin, 1985. Zbl 0553.08001, MR 0788695
Reference: [10] Romanowska A.B., Smith J.D.H.: Embedding sums of cancellative modes into functorial sums of affine spaces.in Unsolved Problems on Mathematics for the 21st Century, a Tribute to Kiyoshi Iseki's 80th Birthday (eds. J.M. Abe and S. Tanaka), IOS Press, Amsterdam, 2001, pp.127-139. Zbl 0989.08001, MR 1896671
Reference: [11] Romanowska A.B., Smith J.D.H.: Modes.World Scientific, Singapore, 2002. Zbl 1060.08009, MR 1932199
Reference: [12] Romanowska A.B.: Semi-affine modes and modals.Sci. Math. Jpn. 61 (2005), 159-194. Zbl 1067.08001, MR 2111551
Reference: [13] Romanowska A.B., Traina S.: Algebraic quasi-orders and sums of algebras.Discuss. Math. Algebra Stochastic Methods 19 (1999), 239-263. Zbl 0949.08001, MR 1709970
Reference: [14] Romanowska A.B., Zamojska-Dzienio A.: Embedding semilattice sums of cancellative modes into semimodules.Contributions to General Algebra 13 (2001), 295-304. Zbl 0993.08004, MR 1854593
Reference: [15] Romanowska A.B., Zamojska-Dzienio A.: Embedding sums of cancellative modes into semimodules.Czechoslovak Math. J. 55 4 (2005), 975-991. Zbl 1081.08003, MR 2184378
Reference: [16] Zamojska-Dzienio A.: Embedding modes into semimodules (in English).Ph.D. Thesis, Warsaw University of Technology, Warszawa, 2003.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-1_3.pdf 308.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo