[1] Auslender A.:
Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim. 22 (1984), 239-254.
MR 0732426 |
Zbl 0538.49020
[2] Bazaraa M.S., Sherali H.D., Shetty C.M.:
Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New York, 1991.
MR 2218478 |
Zbl 1140.90040
[3] Ben-Israel A., Mond B.:
What is invexity?. J. Austral. Math. Soc. Ser. B 28 (1986), 1-9.
MR 0846778 |
Zbl 0603.90119
[5] Craven B.D.:
Nonsmooth multiobjective programming. Numer. Funct. Anal. Optim. 10 1-2 (1989), 49-64.
MR 0978802 |
Zbl 0645.90076
[6] Cromme L.:
Strong uniqueness: a far-reaching criterion for the convergence of iterative procedures. Numer. Math. 29 (1978), 179-193.
MR 0461890
[7] Egudo R.R., Mond B.:
Duality with generalized convexity. J. Austral. Math. Soc. Ser. B 28 (1986), 10-21.
MR 0846779 |
Zbl 0608.49012
[8] Hiriart-Urruty J.-B.:
Refinements of necessary optimality conditions in nondifferentiable programming I. Appl. Math. Optim. 5 (1979), 63-82.
MR 0526428 |
Zbl 0389.90088
[9] Hanson M.A.:
On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), 545-550.
MR 0614849 |
Zbl 0463.90080
[10] Hanson M.A., Mond B.:
Further generalizations of convexity in mathematical programming. J. Inform. Optim. Sci. 3 (1982), 25-32.
MR 0713163 |
Zbl 0475.90069
[11] Jeyakumar V.:
Strong and weak invexity in mathematical programming. Math. Oper. Res. 55 (1985), 109-125.
MR 0811672 |
Zbl 0566.90086
[12] Jeyakumar V.:
Equivalence of a saddle-points and optima, and duality for a class of non-smooth non-convex problems. J. Math. Anal. Appl. 130 (1988), 334-343.
MR 0929939
[13] Kaul R.N., Suneja S.K., Lalitha C.S.:
Generalized nonsmooth invexity. J. Inform. Optim. Sci. 15 (1994), 1-17.
MR 1262012 |
Zbl 0852.90113
[14] Klatte D.:
Stable local minimizers in semi-infinite optimization: regularity and second-order conditions. J. Comput. Appl. Math. 56 (1994), 137-157.
MR 1338641 |
Zbl 0823.90121
[16] Mond B., Weir T.:
Generalized concavity and duality. in: Generalized Concavity in Optimization and Economics, edited by S. Schaible and W.T. Ziemba, Academic Press, New York, 1981, pp.263-279.
MR 0652702 |
Zbl 0619.90062
[17] Preda V.:
On efficiency and duality for multiobjective programs. J. Math. Anal. Appl. 166 (1992), 365-377.
MR 1160932 |
Zbl 0764.90074
[18] Singer I.:
Abstract Convex Analysis, John Wiley and Sons, New York, 1997.
MR 1461544
[19] Studniarski M.:
Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24 (1986), 1044-1049.
MR 0854069 |
Zbl 0604.49017
[20] Studniarski M.:
Sufficient conditions for the stability of local minimum points in nonsmooth optimization. Optimization 20 (1989), 27-35.
MR 0977217 |
Zbl 0679.90072
[21] Studniarski M.:
Characterizations of strict local minima for some nonlinear programming problems. Nonlinear Anal. 30 (1997), 5363-5367 (Proc. 2nd World Congress of Nonlinear Analysts).
MR 1726039 |
Zbl 0914.90243
[22] Ward D.E.:
Characterizations of strict local minima and necessary conditions for weak sharp minima. J. Optim. Theory Appl. 80 (1994), 551-571.
MR 1265176 |
Zbl 0797.90101
[23] Wolfe P.:
A duality theorem for nonlinear programming. Quart. Appl. Math. 19 (1961), 239-244.
MR 0135625