Previous |  Up |  Next

Article

Keywords:
nonsmooth programming; strict local minimizer of order $m$; Clarke's generalized gradient; $(F, \rho )$-convex function of order $m$ with respect to $\theta $
Summary:
In the paper, some sufficient optimality conditions for strict minima of order $m$ in constrained nonlinear mathematical programming problems involving (locally Lipschitz) $(F,\rho )$-convex functions of order $m$ are presented. Furthermore, the concept of strict local minimizer of order $m$ is also used to state various duality results in the sense of Mond-Weir and in the sense of Wolfe for such nondifferentiable optimization problems.
References:
[1] Auslender A.: Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim. 22 (1984), 239-254. MR 0732426 | Zbl 0538.49020
[2] Bazaraa M.S., Sherali H.D., Shetty C.M.: Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New York, 1991. MR 2218478 | Zbl 1140.90040
[3] Ben-Israel A., Mond B.: What is invexity?. J. Austral. Math. Soc. Ser. B 28 (1986), 1-9. MR 0846778 | Zbl 0603.90119
[4] Clarke F.H.: Optimization and Nonsmooth Analysis. John Wiley and Sons, New York, 1983. MR 0709590 | Zbl 0696.49002
[5] Craven B.D.: Nonsmooth multiobjective programming. Numer. Funct. Anal. Optim. 10 1-2 (1989), 49-64. MR 0978802 | Zbl 0645.90076
[6] Cromme L.: Strong uniqueness: a far-reaching criterion for the convergence of iterative procedures. Numer. Math. 29 (1978), 179-193. MR 0461890
[7] Egudo R.R., Mond B.: Duality with generalized convexity. J. Austral. Math. Soc. Ser. B 28 (1986), 10-21. MR 0846779 | Zbl 0608.49012
[8] Hiriart-Urruty J.-B.: Refinements of necessary optimality conditions in nondifferentiable programming I. Appl. Math. Optim. 5 (1979), 63-82. MR 0526428 | Zbl 0389.90088
[9] Hanson M.A.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), 545-550. MR 0614849 | Zbl 0463.90080
[10] Hanson M.A., Mond B.: Further generalizations of convexity in mathematical programming. J. Inform. Optim. Sci. 3 (1982), 25-32. MR 0713163 | Zbl 0475.90069
[11] Jeyakumar V.: Strong and weak invexity in mathematical programming. Math. Oper. Res. 55 (1985), 109-125. MR 0811672 | Zbl 0566.90086
[12] Jeyakumar V.: Equivalence of a saddle-points and optima, and duality for a class of non-smooth non-convex problems. J. Math. Anal. Appl. 130 (1988), 334-343. MR 0929939
[13] Kaul R.N., Suneja S.K., Lalitha C.S.: Generalized nonsmooth invexity. J. Inform. Optim. Sci. 15 (1994), 1-17. MR 1262012 | Zbl 0852.90113
[14] Klatte D.: Stable local minimizers in semi-infinite optimization: regularity and second-order conditions. J. Comput. Appl. Math. 56 (1994), 137-157. MR 1338641 | Zbl 0823.90121
[15] Mangasarian O.L.: Nonlinear Programming. McGraw-Hill, New York, 1969. MR 0252038 | Zbl 0833.90108
[16] Mond B., Weir T.: Generalized concavity and duality. in: Generalized Concavity in Optimization and Economics, edited by S. Schaible and W.T. Ziemba, Academic Press, New York, 1981, pp.263-279. MR 0652702 | Zbl 0619.90062
[17] Preda V.: On efficiency and duality for multiobjective programs. J. Math. Anal. Appl. 166 (1992), 365-377. MR 1160932 | Zbl 0764.90074
[18] Singer I.: Abstract Convex Analysis, John Wiley and Sons, New York, 1997. MR 1461544
[19] Studniarski M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24 (1986), 1044-1049. MR 0854069 | Zbl 0604.49017
[20] Studniarski M.: Sufficient conditions for the stability of local minimum points in nonsmooth optimization. Optimization 20 (1989), 27-35. MR 0977217 | Zbl 0679.90072
[21] Studniarski M.: Characterizations of strict local minima for some nonlinear programming problems. Nonlinear Anal. 30 (1997), 5363-5367 (Proc. 2nd World Congress of Nonlinear Analysts). MR 1726039 | Zbl 0914.90243
[22] Ward D.E.: Characterizations of strict local minima and necessary conditions for weak sharp minima. J. Optim. Theory Appl. 80 (1994), 551-571. MR 1265176 | Zbl 0797.90101
[23] Wolfe P.: A duality theorem for nonlinear programming. Quart. Appl. Math. 19 (1961), 239-244. MR 0135625
Partner of
EuDML logo