Previous |  Up |  Next

Article

Title: On existence and regularity of solutions to a class of generalized stationary Stokes problem (English)
Author: Huy, Nguyen Duc
Author: Stará, Jana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 2
Year: 2006
Pages: 241-264
.
Category: math
.
Summary: We investigate the existence of weak solutions and their smoothness properties for a generalized Stokes problem. The generalization is twofold: the Laplace operator is replaced by a general second order linear elliptic operator in divergence form and the ``pressure'' gradient $\nabla p$ is replaced by a linear operator of first order. (English)
Keyword: generalized Stokes problem
Keyword: weak solutions
Keyword: regularity up to the boundary
MSC: 35B65
MSC: 35D05
MSC: 35D10
MSC: 35J55
MSC: 35Q30
MSC: 35Q35
MSC: 76D03
MSC: 76D07
idZBL: Zbl 1150.76010
idMR: MR2241530
.
Date available: 2009-05-05T16:57:04Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119590
.
Reference: [1] Adams R.A.: Sobolev Spaces.Academic Press, New York, 1975. Zbl 1098.46001, MR 0450957
Reference: [2] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I.Comm. Pure Appl. Math. 12 (1959), 623-727. Zbl 0093.10401, MR 0125307
Reference: [3] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II.Comm. Pure Appl. Math. 17 (1964), 35-92. Zbl 0123.28706, MR 0162050
Reference: [4] Amrouche C., Girault V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension.Czechoslovak Math. J. 44(119) (1994), 1 109-140. Zbl 0823.35140, MR 1257940
Reference: [5] Fuchs M., Seregin G.: Variational methods for problems from plasticity theory and for generalized Newtonian fluids.Lecture Notes in Mathematics, 1749, Springer Verlag, Berlin, 2000. Zbl 0964.76003, MR 1810507
Reference: [6] Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, I: Linearized Steady Problems.Springer Verlag, New York, 1994. MR 1284205
Reference: [7] Nečas J.: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [8] Sohr H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach.Birkhäuser Verlag, Basel, 2001. Zbl 0983.35004, MR 1928881
Reference: [9] Solonnikov V.A.: Initial-boundary value problem for generalized Stokes equations.Math. Bohem. 126 (2001), 2 505-519. Zbl 1003.76016, MR 1844287
Reference: [10] Stará J.: Regularity results for non-linear elliptic systems in two dimensions.Ann. Scuola Norm. Sup. Pisa (3) 25 (1971), 163-190. MR 0299935
Reference: [11] Hron J., Málek J., Nečas J., Rajagopal K.R.: Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities.Math. Comput. Simulation 61 3-6 (2003), 297-315. Zbl 1205.76159, MR 1984133
Reference: [12] Málek J., Nečas J., Rajagopal K.R.: Global analysis of the flows of fluids with pressure-dependent viscosities.Arch. Ration. Mech. Anal. 165 (2002), 243-269. Zbl 1022.76011, MR 1941479
Reference: [13] Franta M., Málek J., Rajagopal K.R.: On steady flows of fluids with pressure- and shear-dependent viscosities.Proc. Royal Soc. London Ser. A 461 (2005), 651-670. Zbl 1145.76311, MR 2121929
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-2_5.pdf 300.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo