Previous |  Up |  Next

Article

Title: The conjugate of a product of linear relations (English)
Author: Jaftha, J. J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 2
Year: 2006
Pages: 265-273
.
Category: math
.
Summary: Let $X$, $Y$ and $Z$ be normed linear spaces with $T(X\rightarrow Y)$ and $S(Y\rightarrow Z)$ linear relations, i.e. setvalued maps. We seek necessary and sufficient conditions that would ensure that $(ST)'=T'S'$. First, we cast the concepts of relative boundedness and co-continuity in the set valued case and establish a duality. This duality turns out to be similar to the one that exists for densely defined linear operators and is then used to establish the necessary and sufficient conditions. These conditions are similar to those for the single valued case. In the process, the well known characterisation of relativeboundedness for closed linear operators by Sz.-Nagy is extended to the multivalued linear maps and we compare our results to other known necessary and sufficient conditions. (English)
Keyword: linear relations
Keyword: conjugates
Keyword: linear operators
MSC: 47A05
MSC: 47A06
idZBL: Zbl 1150.47002
idMR: MR2241531
.
Date available: 2009-05-05T16:57:16Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119591
.
Reference: [CG70] van Casteren J.A.W., Goldberg S.: The conjugate of a product of operators.Studia Math. 38 (1970), 125-130. MR 0275192
Reference: [Cro98] Cross R.W.: Multivalued Linear Operators.Marcel Dekker, New York, 1998. Zbl 0911.47002, MR 1631548
Reference: [FL77] Förster K.-H., Liebetrau E.-O.: On semi-Fredholm operators and the conjugate of a product of operators.Studia Math. 59 (1976/77), 301-306. MR 0435883
Reference: [For74] Förster K.-H.: Relativ co-stetige Operatoren in normierten Räumen.Arch. Math. 25 (1974), 639-645. MR 0397459
Reference: [Kaa64] Kaashoek M.A.: Closed linear operators on Banach spaces.Ph.D. Thesis, Univ. Leiden, 1964. Zbl 0138.07502, MR 0185451
Reference: [Kas68] Kascic M.J.: Polynomials in linear relations.Pacific J. Math. 24 (1968), 291-295. Zbl 0155.19004, MR 0222670
Reference: [Kat66] Kato T.: Perturbation Theory for Linear Operators.Grundlehren, vol. 132, Springer, Berlin, 1966. Zbl 0836.47009
Reference: [SN51] Sz.-Nagy B.: Perturbations des transformations linéaires fermées.Acta Sci. Math. Szeged 14 (1951), 125-137. Zbl 0045.21601, MR 0047254
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-2_6.pdf 204.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo