[B] Benderskiy O.Ya.: $L^p(m)$-spaces for measures with values in a topological semifield. Doklady Akad. Nauk UzSSR, 1976, n.9, 3-4 (Russian).
[CG] Chilin V.I., Ganiev I.G.: 
An individual ergodic theorem for contractions in the Banach-Kantorovich lattice $L^p(\nabla,\mu)$. Russian Math. (Iz. VUZ) 44 (2000), 7 77-79. 
MR 1803997[Ga1] Ganiev I.G.: 
Measurable bundles of Banach lattices. Uzbek. Mat. Zh. 5 (1998), 14-21 (Russian). 
MR 1802533[Ga2] Ganiev I.G.: Measurable bundles of metrizable topological spaces. Doklady Akad. Nauk Rep. Uzb. 4 (1999), 8-11 (Russian).
[Ga3] Ganiev I.G.: Martingales in the Banach-Kantorovich's lattices $L_p(\hat{\nabla},\hat{\mu})$. Proc. Int. Conf. Math. and its Appl. in New Millenium, Univ. Putra, Malaysia, 2001, pp,52-59.
[GaC] Ganiev I.G., Chilin V.I.: 
Measurable bundles of noncommutative $L^p$-spaces associated with a center-valued trace. Siberian Adv. Math. 12 (2002), 4 19-33. 
MR 1984635[G1] Gutman A.E.: 
Banach bundles in the theory of lattice-normed spaces, III. Siberian Adv. Math. 3 (1993), 4 8-40. 
MR 1323890[G2] Gutman A.E.: 
Banach fiberings in the theory of lattice-normed spaces. Order-compatible linear operators. Trudy Inst. Mat. 29 (1995), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 1995, pp.63-211 (Russian). 
MR 1774033[KVP] Kantorovich L.V., Vulih B.Z., Pinsker A.G.: 
Functional Analysis in Partially Ordered Spaces. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). 
MR 0038006[KT] Katznelson Y., Tzafriri L.: 
On power bounded operators. J. Funct. Anal. 68 (1986), 313-328. 
MR 0859138 | 
Zbl 0611.47005[K2] Kusraev A.G.: 
Dominanted Ooperators. Mathematics and its Applications, 519, Kluwer Academic Publishers, Dordrecht, 2000. 
MR 1793005[OS] Ornstein D., Sucheston L.: 
An operator theorem on $L_1$ convergence to zero with applications to Markov kernels. Ann. Math. Statis. 41 (1970), 1631-1639. 
MR 0272057 | 
Zbl 0284.60068[S] Sarymsakov T.A.: 
Topological Semifields and its Applications. Tashkent, Fan, 1989 (Russian). 
MR 1200017[V] Vulih B.Z.: 
Introduction to Theory of Partially Ordered Spaces. Moscow, 1961 (Russian); English translation: Wolters-Noordhoff, Groningen, 1967. 
MR 0224522[W] Woyczynski W.A.: 
Geometry and martingales in Banach spaces. Lecture Notes in Math., vol. 472, Springer, Berlin, 1975, pp.235-283. 
MR 0394131 | 
Zbl 0353.60044[Z1] Zaharopol R.: 
The modulus of a regular linear operators and the ``zero-two'' law in $L^p$-spaces $(1. J. Funct. Anal. 68 (1986), 300-312. MR 0859137
[Z2] Zaharopol R.: 
On the ``zero-two'' law for positive contractions. Proc. Edinburgh Math. Soc. 32 (1989), 363-370. 
MR 1015480 | 
Zbl 0663.47028