Article
Keywords:
distribution; projective space; Fourier-Laplace series; Ces\`aro summability
Summary:
We show that the Fourier-Laplace series of a distribution on the real, complex or quarternionic projective space is uniformly Ces\`aro-summable to zero on a neighbourhood of a point if and only if this point does not belong to the support of the distribution.
References:
                        
[1] Fomenko A.T.: 
Symplectic Geometry. Gordon and Breach Science Publishers, New York, 1988. 
MR 0994805 | 
Zbl 0873.58031[2] González Vieli F.J.: 
Fourier inversion of distributions on the sphere. J. Korean Math. Soc. 41 (2004), 755-772. 
MR 2068151 | 
Zbl 1066.46031[4] Helgason S.: 
Differential Geometry and Symmetric Spaces. Academic Press, New York, 1962. 
MR 0145455 | 
Zbl 0122.39901[5] Kahane J.-P., Salem R.: 
Ensembles parfaits et séries trigonométriques. Hermann, Paris, 1963. 
MR 0160065 | 
Zbl 0856.42001[6] Stein E.M., Weiss G.: 
Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, 1971. 
MR 0304972 | 
Zbl 0232.42007[7] Walter G.: 
Pointwise convergence of distribution expansions. Studia Math. 26 (1966), 143-154. 
MR 0190624 | 
Zbl 0144.37401