Previous |  Up |  Next

Article

Title: A note on paratopological groups (English)
Author: Liu, Chuan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 4
Year: 2006
Pages: 633-640
.
Category: math
.
Summary: In this paper, it is proved that a first-countable paratopological group has a regular $G_{\delta}$-diagonal, which gives an affirmative answer to Arhangel'skii and Burke's question [{\it Spaces with a regular $G_{\delta}$-diagonal\/}, Topology Appl. {\bf 153} (2006), 1917--1929]. If $G$ is a symmetrizable paratopological group, then $G$ is a developable space. We also discuss copies of $S_\omega$ and of $S_2$ in paratopological groups and generalize some Nyikos [{\it Metrizability and the Fréchet-Urysohn property in topological groups\/}, Proc. Amer. Math. Soc. {\bf 83} (1981), no. 4, 793--801] and Svetlichnyi [{\it Intersection of topologies and metrizability in topological groups\/}, Vestnik Moskov. Univ. Ser. I Mat. Mekh. {\bf 4} (1989), 79--81] results. (English)
Keyword: paratopological group
Keyword: symmetrizable spaces
Keyword: regular $G_{\delta}$-diagonal
Keyword: weak bases
Keyword: Arens space
MSC: 22A30
MSC: 54E30
MSC: 54H13
MSC: 54H99
idZBL: Zbl 1150.54036
idMR: MR2337418
.
Date available: 2009-05-05T17:00:13Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119624
.
Reference: [1] Arhangel'skiĭ A.V.: Mappings and spaces.Russian Math. Surveys 21 (1966), 115-162. MR 0227950
Reference: [2] Arhangel'skii A.V.: The frequency spectrum of a topological space and the product operation.Trans. Moscow Math. Soc. 2 (1981), 163-200.
Reference: [3] Arhangel'skii A.V., Burke D.: Spaces with a regular $G_{\delta}$-diagonal.Topology Appl. 153 (2006), 1917-1929. Zbl 1117.54004, MR 2227036
Reference: [4] Arhangel'skii A.V., Reznichenko E.A.: Paratopological and semitopological groups versus topological groups.Topology Appl. 151 (2005), 107-119. Zbl 1077.54023, MR 2139745
Reference: [5] Burke D., Engelking R., Lutzer D.: Hereditarily closure-preserving collections and metrization.Proc. Amer. Math. Soc. 51 (1975), 483-488. Zbl 0307.54030, MR 0370519
Reference: [6] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [7] Foged L.: A characterization of closed images of metric spaces.Proc. Amer. Math. Soc. 95 (1985), 487-490. Zbl 0592.54027, MR 0806093
Reference: [8] Gruenhage G.: Generalized metric spaces.in: K. Kunen, J.E. Vaughan eds., Handbook of Set-theoretic Topology, North-Holland, 1984, pp.423-501. Zbl 0794.54034, MR 0776629
Reference: [9] Gruenhage G., Michael E., Tanaka Y.: Spaces determined by point-countable covers.Pacific J. Math. 113 (1984), 303-332. Zbl 0561.54016, MR 0749538
Reference: [10] Liu C.: On weakly bisequential spaces.Comment Math. Univ. Carolin. 41 3 (2000), 611-617. Zbl 1038.54004, MR 1795090
Reference: [11] Liu C.: Notes on g-metrizable spaces.Topology Proc. 29 1 (2005), 207-215. Zbl 1085.54019, MR 2182930
Reference: [12] Liu C.: Nagata-Smirnov revisited: spaces with $\sigma$-wHCP bases.Topology Proc. 29 2 (2005), 559-565. Zbl 1123.54009, MR 2244489
Reference: [13] Michael E.: A quintuple quotient quest.General Topology Appl. 2 (1972), 91-138. Zbl 0238.54009, MR 0309045
Reference: [14] Nogura T., Shakhmatov D., Tanaka Y.: $\alpha_4$-property versus $A$-property in topological spaces and groups.Studia Sci. Math. Hungar. 33 (1997), 351-362. Zbl 0902.22001, MR 1601628
Reference: [15] Nyikos P.: Metrizability and the Fréchet-Urysohn property in topological groups.Proc. Amer. Math. Soc. 83 4 (1981), 793-801. Zbl 0474.22001, MR 0630057
Reference: [16] O'Meara P.: On paracompactness in function spaces with the compact open topology.Proc. Amer. Math. Soc. 29 (1971), 183-189. Zbl 0214.21105, MR 0276919
Reference: [17] Sirois-Dumais R.: Quasi- and weakly-quasi-first-countable space.Topology Appl. 11 (1980), 223-230. MR 0572376
Reference: [18] Svetlichnyi S.A.: Intersection of topologies and metrizability in topological groups.Vestnik Moskov. Univ. Ser I Mat. Mekh. 4 (1989), 79-81. MR 1029763
Reference: [19] Reznichenko E.A.: Extensions of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups.Topology Appl. 59 (1994), 233-244. MR 1299719
Reference: [20] Tanaka Y.: Metrizability of certain quotient spaces.Fund. Math. 119 (1983), 157-168. MR 0731817
Reference: [21] Zenor P.: On spaces with regular $G_{\delta}$-diagonals.Pacific J. Math. 40 (1972), 759-763. MR 0307195
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-4_9.pdf 218.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo