| Title: | Characterizations of $L^1$-predual spaces by centerable subsets (English) | 
| Author: | Duan, Yanzheng | 
| Author: | Lin, Bor-Luh | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 48 | 
| Issue: | 2 | 
| Year: | 2007 | 
| Pages: | 239-243 | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this note, we prove that a real or complex Banach space $X$ is an $L^1$-predual space if and only if every four-point subset of $X$ is centerable. The real case sharpens Rao's result in [{\it Chebyshev centers and centerable sets\/}, Proc. Amer. Math. Soc. {\bf 130} (2002), no. 9, 2593--2598] and the complex case is closely related to the characterizations of $L^1$-predual spaces by Lima [{\it Complex Banach spaces whose duals are $L_1$-spaces\/}, Israel J. Math. {\bf 24} (1976), no. 1, 59--72]. (English) | 
| Keyword: | Chebyshev radius | 
| Keyword: | centerable subsets and $L^1 $-predual spaces | 
| MSC: | 41A65 | 
| MSC: | 46B20 | 
| idZBL: | Zbl 1199.41181 | 
| idMR: | MR2338092 | 
| . | 
| Date available: | 2009-05-05T17:02:36Z | 
| Last updated: | 2012-05-01 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119654 | 
| . | 
| Reference: | [1] Bandyopadhyay P., Rao T.S.S.R.K.: Central subspaces of Banach spaces.J. Approx. Theory 103 (2000), 206-222. Zbl 0965.46005, MR 1749962 | 
| Reference: | [2] Davis W.J.: A characterization of $\Cal P_1$ spaces.J. Approx. Theory 21 (1977), 315-318. Zbl 0373.46034, MR 0454592 | 
| Reference: | [3] Hanner O.: Intersections of translates of convex bodies.Math. Scand. 4 (1956), 65-87. Zbl 0070.39302, MR 0082696 | 
| Reference: | [4] Holmes R.B.: A course on optimization and best approximation.Lecture Notes in Math., Vol. 257, Springer, Berlin, 1972. Zbl 0235.41016, MR 0420367 | 
| Reference: | [5] Hustad O.: Intersection properties of balls in complex Banach spaces whose dual are $L^1$-spaces.Acta Math. 132 (1974), 282-313. MR 0388049 | 
| Reference: | [6] Lacey H.E.: The isometric theory of classical Banach spaces.Grundlehren Math. Wiss., Band 208, Springer, New York-Heidelberg, 1974. Zbl 0285.46024, MR 0493279 | 
| Reference: | [7] Lima A.: Complex Banach spaces whose duals are $L_1$-spaces.Israel J. Math. 24 (1976), 1 59-72. Zbl 0334.46014, MR 0425584 | 
| Reference: | [8] Lima A.: Intersection properties of balls and subspaces in Banach spaces.Trans. Amer. Math. Soc. 227 (1977), 1-62. Zbl 0347.46017, MR 0430747 | 
| Reference: | [9] Lindenstrauss J.: Extension of compact operators.Mem. Amer. Math. Soc., Vol. 48, Provindence, 1964. Zbl 0141.12001, MR 0179580 | 
| Reference: | [10] Rao T.S.S.R.K.: Chebyshev centers and centerable sets.Proc. Amer. Math. Soc. 130 (2002), 9 2593-2598. MR 1900866 | 
| . |