Previous |  Up |  Next

Article

Title: Covering $\Sigma^0_\xi$-generated ideals by $\Pi^0_\xi$ sets (English)
Author: Mátrai, Tamás
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 2
Year: 2007
Pages: 245-268
.
Category: math
.
Summary: \font\mm=cmbx10 at 12pt \def\boldSigma{\mm\char6{}} \def\boldPi{\mm\char5{}} We develop the theory of topological Hurewicz test pairs: a concept which allows us to distinguish the classes of the Borel hierarchy by Baire category in a suitable topology. As an application we show that for every ${\boldsymbol \Pi}^{0}_{\xi}$ and not ${\boldsymbol \Sigma}^{0}_{\xi}$ subset $P$ of a Polish space $X$ there is a $\sigma$-ideal $\Cal I\subseteq 2^{X}$ such that $P\notin \Cal I$ but for every ${\boldsymbol \Sigma}^{0}_{\xi}$ set $B\subseteq P$ there is a ${\boldsymbol \Pi}^{0}_{\xi}$ set $B'\subseteq P$ satisfying $B\subseteq B'\in \Cal I$. We also discuss several other results and problems related to ideal generation and Hurewicz test pairs. (English)
Keyword: Borel $\sigma$-ideal
Keyword: Hurewicz test
MSC: 03E15
MSC: 54H05
idZBL: Zbl 1199.54189
idMR: MR2338093
.
Date available: 2009-05-05T17:02:41Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119655
.
Reference: [1] Jech T.: Set Theory.Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513
Reference: [2] Kechris A.S.: Classical Descriptive Set Theory.Graduate Texts in Mathematics 156, Springer, New York, 1995. Zbl 0819.04002, MR 1321597
Reference: [3] Louveau A., Saint Raymond J.: Borel classes and closed games: Wadge-type and Hurewicz-type results.Trans. Amer. Math. Soc. 304 2 (1987), 431-467. Zbl 0655.04001, MR 0911079
Reference: [4] Mátrai T.: Hurewicz tests: separating and reducing analytic sets on the conscious way.PhD Thesis, Central European University, 2005.
Reference: [5] Mátrai T.: ${\boldsymbol \Pi}^{0}_{2}$-generated ideals are unwitnessable.submitted for publication.
Reference: [6] Miller A.: Problems.http://www.math.wisc.edu/ miller/res/problem.pdf. Zbl 1160.90358
Reference: [7] Solecki S.: Covering analytic sets by families of closed sets.J. Symbolic Logic 59 3 (1994), 1022-1031. Zbl 0808.03031, MR 1295987
Reference: [8] Solecki S.: Decomposing Borel sets and functions and the structure of Baire class $1$ functions.J. Amer. Math. Soc. 11 3 (1998), 521-550. Zbl 0899.03034, MR 1606843
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-2_7.pdf 346.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo