| Title: | Covering $\Sigma^0_\xi$-generated ideals by $\Pi^0_\xi$ sets (English) | 
| Author: | Mátrai, Tamás | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 48 | 
| Issue: | 2 | 
| Year: | 2007 | 
| Pages: | 245-268 | 
| . | 
| Category: | math | 
| . | 
| Summary: | \font\mm=cmbx10 at 12pt \def\boldSigma{\mm\char6{}} \def\boldPi{\mm\char5{}} We develop the theory of topological Hurewicz test pairs: a concept which allows us to distinguish the classes of the Borel hierarchy by Baire category in a suitable topology. As an application we show that for every ${\boldsymbol \Pi}^{0}_{\xi}$ and not ${\boldsymbol \Sigma}^{0}_{\xi}$ subset $P$ of a Polish space $X$ there is a $\sigma$-ideal $\Cal I\subseteq 2^{X}$ such that $P\notin \Cal I$ but for every ${\boldsymbol \Sigma}^{0}_{\xi}$ set $B\subseteq P$ there is a ${\boldsymbol \Pi}^{0}_{\xi}$ set $B'\subseteq P$ satisfying $B\subseteq B'\in \Cal I$. We also discuss several other results and problems related to ideal generation and Hurewicz test pairs. (English) | 
| Keyword: | Borel $\sigma$-ideal | 
| Keyword: | Hurewicz test | 
| MSC: | 03E15 | 
| MSC: | 54H05 | 
| idZBL: | Zbl 1199.54189 | 
| idMR: | MR2338093 | 
| . | 
| Date available: | 2009-05-05T17:02:41Z | 
| Last updated: | 2012-05-01 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119655 | 
| . | 
| Reference: | [1] Jech T.: Set Theory.Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513 | 
| Reference: | [2] Kechris A.S.: Classical Descriptive Set Theory.Graduate Texts in Mathematics 156, Springer, New York, 1995. Zbl 0819.04002, MR 1321597 | 
| Reference: | [3] Louveau A., Saint Raymond J.: Borel classes and closed games: Wadge-type and Hurewicz-type results.Trans. Amer. Math. Soc. 304 2 (1987), 431-467. Zbl 0655.04001, MR 0911079 | 
| Reference: | [4] Mátrai T.: Hurewicz tests: separating and reducing analytic sets on the conscious way.PhD Thesis, Central European University, 2005. | 
| Reference: | [5] Mátrai T.: ${\boldsymbol \Pi}^{0}_{2}$-generated ideals are unwitnessable.submitted for publication. | 
| Reference: | [6] Miller A.: Problems.http://www.math.wisc.edu/ miller/res/problem.pdf. Zbl 1160.90358 | 
| Reference: | [7] Solecki S.: Covering analytic sets by families of closed sets.J. Symbolic Logic 59 3 (1994), 1022-1031. Zbl 0808.03031, MR 1295987 | 
| Reference: | [8] Solecki S.: Decomposing Borel sets and functions and the structure of Baire class $1$ functions.J. Amer. Math. Soc. 11 3 (1998), 521-550. Zbl 0899.03034, MR 1606843 | 
| . |