Previous |  Up |  Next

Article

Title: Construction of Šindel sequences (English)
Author: Křížek, Michal
Author: Šolcová, Alena
Author: Somer, Lawrence
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 3
Year: 2007
Pages: 373-388
.
Category: math
.
Summary: We found that there is a remarkable relationship between the triangular numbers $T_k$ and the astronomical clock (horologe) of Prague. We introduce Šindel sequences $\{a_i\}\subset \Bbb N$ of natural numbers as those periodic sequences with period $p$ that satisfy the following condition: for any $k\in\Bbb N$ there exists $n\in\Bbb N$ such that $T_k=a_1+\cdots+a_n$. We shall see that this condition guarantees a functioning of the bellworks, which is controlled by the horologe. We give a necessary and sufficient condition for a periodic sequence to be a Šindel sequence. We also present an algorithm which produces the so-called primitive Šindel sequence, which is uniquely determined for a given $s=a_1+\cdots+a_p$. (English)
Keyword: Jacobi symbol
Keyword: quadratic nonresidue
Keyword: clock sequence
Keyword: primitive Šindel sequences
Keyword: Chinese remainder theorem
Keyword: Dirichlet's theorem
MSC: 01A40
MSC: 11A07
MSC: 11A51
MSC: 11B83
idZBL: Zbl 1174.11029
idMR: MR2374121
.
Date available: 2009-05-05T17:03:33Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119666
.
Reference: [1] Burton D.M.: Elementary Number Theory.fourth edition, McGraw-Hill, New York (1989, 1998). MR 0990017
Reference: [2] Horský Z.: The Astronomical Clock of Prague (in Czech).Panorama, Prague (1988).
Reference: [3] Křížek M., Luca F., Somer L.: 17 Lectures on Fermat Numbers: From Number Theory to Geometry.CMS Books in Mathematics, vol. 9, Springer New York (2001). Zbl 1010.11002, MR 1866957
Reference: [4] Niven I., Zuckerman H.S., Montgomery H.L.: An Introduction to the Theory of Numbers.fifth edition, John Wiley & Sons, New York (1991). Zbl 0742.11001, MR 1083765
Reference: [5] Sloane N.J.A.: My favorite integer sequences.arXiv: math. C0/0207175v1 (2002), 1-28. Zbl 1049.11026, MR 1843083
Reference: [6] Tattersall J.J.: Elementary Number Theory in Nine Chapters.second edition, Cambridge Univ. Press, Cambridge (2005). Zbl 1071.11002, MR 2156483
Reference: [7] HASH(0x9391e98): http://www.research.att.com/\char` njas/sequences/..
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-3_1.pdf 596.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo