Previous |  Up |  Next

Article

Title: Directoids with an antitone involution (English)
Author: Chajda, I.
Author: Kolařík, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 4
Year: 2007
Pages: 555-569
.
Category: math
.
Summary: We investigate $\sqcap$-directoids which are bounded and equipped by a unary operation which is an antitone involution. Hence, a new operation $\sqcup$ can be introduced via De Morgan laws. Basic properties of these algebras are established. On every such an algebra a ring-like structure can be derived whose axioms are similar to that of a generalized boolean quasiring. We introduce a concept of symmetrical difference and prove its basic properties. Finally, we study conditions of direct decomposability of directoids with an antitone involution. (English)
Keyword: directoid
Keyword: antitone involution
Keyword: D-quasiring
Keyword: symmetrical difference
Keyword: direct decomposition
MSC: 06A06
MSC: 06A12
MSC: 06E20
MSC: 16Y99
idZBL: Zbl 1199.06012
idMR: MR2375158
.
Date available: 2009-05-05T17:04:42Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119680
.
Reference: [1] Chajda I.: Pseudosemirings induced by ortholattices.Czechoslovak Math. J., 46 (1996), 405-411. Zbl 0879.06003, MR 1408295
Reference: [2] Chajda I., Eigenthaler G.: A note on orthopseudorings and Boolean quasirings.Österr. Akad. Wiss. Math.-Natur., Kl., Sitzungsber. II, 207 (1998), 83-94. Zbl 1040.06003, MR 1749914
Reference: [3] Dorfer D., Dvurečenskij A., Länger H.: Symmetrical difference in orthomodular lattices.Math. Slovaca 46 (1996), 435-444. MR 1451034
Reference: [4] Dorminger D., Länger H., Mączyński M.: The logic induced by a system of homomorphisms and its various algebraic characterizations.Demonstratio Math. 30 (1997), 215-232. MR 1446613
Reference: [5] Gardner B.J., Parmenter M.M.: Directoids and directed groups.Algebra Universalis 33 (1995), 254-273. Zbl 0832.06005, MR 1318990
Reference: [6] Ježek J., Quackenbush R.: Directoids: algebraic models of up-directed sets.Algebra Universalis 27 (1990), 49-69. MR 1025835
Reference: [7] Kopytov V.M., Dimitrov Z.I.: On directed groups.Siberian Math. J. 30 (1989), 895-902; (Russian original: Sibirsk. Mat. Zh. 30 (1988), no. 6, 78-86). Zbl 0714.06007, MR 1043436
Reference: [8] Leutola K., Nieminen J.: Posets and generalized lattices.Algebra Universalis 16 (1983), 344-354. Zbl 0514.06003, MR 0695054
Reference: [9] Nieminen J.: On distributive and modular $\chi$-lattices.Yokohama Math. J. 31 (1983), 13-20. Zbl 0532.06002, MR 0734154
Reference: [10] Snášel V.: $\lambda$-lattices.Math. Bohemica 122 (1997), 367-372. MR 1600648
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-4_1.pdf 235.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo