Title:
|
Directoids with an antitone involution (English) |
Author:
|
Chajda, I. |
Author:
|
Kolařík, M. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
48 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
555-569 |
. |
Category:
|
math |
. |
Summary:
|
We investigate $\sqcap$-directoids which are bounded and equipped by a unary operation which is an antitone involution. Hence, a new operation $\sqcup$ can be introduced via De Morgan laws. Basic properties of these algebras are established. On every such an algebra a ring-like structure can be derived whose axioms are similar to that of a generalized boolean quasiring. We introduce a concept of symmetrical difference and prove its basic properties. Finally, we study conditions of direct decomposability of directoids with an antitone involution. (English) |
Keyword:
|
directoid |
Keyword:
|
antitone involution |
Keyword:
|
D-quasiring |
Keyword:
|
symmetrical difference |
Keyword:
|
direct decomposition |
MSC:
|
06A06 |
MSC:
|
06A12 |
MSC:
|
06E20 |
MSC:
|
16Y99 |
idZBL:
|
Zbl 1199.06012 |
idMR:
|
MR2375158 |
. |
Date available:
|
2009-05-05T17:04:42Z |
Last updated:
|
2012-05-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119680 |
. |
Reference:
|
[1] Chajda I.: Pseudosemirings induced by ortholattices.Czechoslovak Math. J., 46 (1996), 405-411. Zbl 0879.06003, MR 1408295 |
Reference:
|
[2] Chajda I., Eigenthaler G.: A note on orthopseudorings and Boolean quasirings.Österr. Akad. Wiss. Math.-Natur., Kl., Sitzungsber. II, 207 (1998), 83-94. Zbl 1040.06003, MR 1749914 |
Reference:
|
[3] Dorfer D., Dvurečenskij A., Länger H.: Symmetrical difference in orthomodular lattices.Math. Slovaca 46 (1996), 435-444. MR 1451034 |
Reference:
|
[4] Dorminger D., Länger H., Mączyński M.: The logic induced by a system of homomorphisms and its various algebraic characterizations.Demonstratio Math. 30 (1997), 215-232. MR 1446613 |
Reference:
|
[5] Gardner B.J., Parmenter M.M.: Directoids and directed groups.Algebra Universalis 33 (1995), 254-273. Zbl 0832.06005, MR 1318990 |
Reference:
|
[6] Ježek J., Quackenbush R.: Directoids: algebraic models of up-directed sets.Algebra Universalis 27 (1990), 49-69. MR 1025835 |
Reference:
|
[7] Kopytov V.M., Dimitrov Z.I.: On directed groups.Siberian Math. J. 30 (1989), 895-902; (Russian original: Sibirsk. Mat. Zh. 30 (1988), no. 6, 78-86). Zbl 0714.06007, MR 1043436 |
Reference:
|
[8] Leutola K., Nieminen J.: Posets and generalized lattices.Algebra Universalis 16 (1983), 344-354. Zbl 0514.06003, MR 0695054 |
Reference:
|
[9] Nieminen J.: On distributive and modular $\chi$-lattices.Yokohama Math. J. 31 (1983), 13-20. Zbl 0532.06002, MR 0734154 |
Reference:
|
[10] Snášel V.: $\lambda$-lattices.Math. Bohemica 122 (1997), 367-372. MR 1600648 |
. |