Previous |  Up |  Next

Article

Title: A scoop from groups: equational foundations for loops (English)
Author: Phillips, J. D.
Author: Vojtěchovský, Petr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 2
Year: 2008
Pages: 279-290
.
Category: math
.
Summary: Groups are usually axiomatized as algebras with an associative binary operation, a two-sided neutral element, and with two-sided inverses. We show in this note that the same simplicity of axioms can be achieved for some of the most important varieties of loops. In particular, we investigate loops of Bol-Moufang type in the underlying variety of magmas with two-sided inverses, and obtain ``group-like'' equational bases for Moufang, Bol and C-loops. We also discuss the case when the inverses are only one-sided and/or the neutral element is only one-sided. (English)
Keyword: inverse property loop
Keyword: Bol loop
Keyword: Moufang loop
Keyword: C-loop
Keyword: equational basis
Keyword: magma with inverses
MSC: 03C05
MSC: 20A05
MSC: 20N05
idZBL: Zbl 1192.20058
idMR: MR2426892
.
Date available: 2009-05-05T17:11:18Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119722
.
Reference: [1] Bates G.E., Kiokemeister F.: A note on homomorphic mappings of quasigroups into multiplicative systems.Bull. Amer. Math. Soc. 54 (1948), 1180-1185. Zbl 0034.29801, MR 0027768, 10.1090/S0002-9904-1948-09146-7
Reference: [2] Bruck R.H.: A Survey of Binary Systems, third printing, corrected.Ergebnisse der Mathematik und ihrer Grenzgebiete, New Series 20, Springer, Berlin, 1971. MR 0093552
Reference: [3] Colbourn C.J., Rosa A.: Triple Systems.Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl 1030.05017, MR 1843379
Reference: [4] Conway J.H.: A simple construction for the Fischer-Griess monster group.Invent. Math. 79 (1985), 513-540. Zbl 0564.20010, MR 0782233, 10.1007/BF01388521
Reference: [5] Dénes J., Keedwell A.D.: Latin Squares and their Applications.Akadémiai Kiadó, Budapest, 1974. MR 0351850
Reference: [6] Doro S.: Simple Moufang loops.Math. Proc. Cambridge Philos. Soc. 83 (1978), 377-392. Zbl 0381.20054, MR 0492031, 10.1017/S0305004100054669
Reference: [7] Evans T.: Homomorphisms of non-associative systems.J. London Math. Soc. 24 (1949), 254-260. MR 0032664, 10.1112/jlms/s1-24.4.254
Reference: [8] Fenyves F.: Extra loops II. On loops with identities of Bol-Moufang type.Publ. Math. Debrecen 16 (1969), 187-192. MR 0262409
Reference: [9] Hall M.: The Theory of Groups.The Macmillan Co., New York, 1959. Zbl 0919.20001, MR 0103215
Reference: [10] Goodaire E.G., Jespers E., Polcino Milies C.: Alternative Loop Rings.North-Holland Mathematics Studies 184, North-Holland Publishing Co., Amsterdam, 1996. Zbl 0878.17029, MR 1433590
Reference: [11] Kiechle H.: Theory of K-loops.Lecture Notes in Mathematics 1778, Springer, Berlin, 2002. Zbl 0997.20059, MR 1899153, 10.1007/b83276
Reference: [12] Kinyon M.K., Phillips J.D., Vojtěchovský P.: C-loops: Extensions and constructions.J. Algebra Appl. 6 (2007), 1 1-20. Zbl 1129.20043, MR 2302693, 10.1142/S0219498807001990
Reference: [13] Kunen K.: Quasigroups, loops, and associative laws.J. Algebra 185 (1996), 1 194-204. Zbl 0860.20053, MR 1409983, 10.1006/jabr.1996.0321
Reference: [14] Mann H.B.: On certain systems which are almost groups.Bull. Amer. Math. Soc. 50 (1944), 879-881. Zbl 0063.03769, MR 0011313, 10.1090/S0002-9904-1944-08256-6
Reference: [15] McCune W.W.: Prover9 and Mace, download at http://www.prover9.org..
Reference: [16] Nagy G.P.: A class of proper simple Bol loops.submitted, available at arXiv:math/0703919.
Reference: [17] Ormes N., Vojtěchovský P.: Powers and alternative laws.Comment. Math. Univ. Carolin. 48 1 (2007), 25-40. Zbl 1174.20343, MR 2338827
Reference: [18] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [19] Pflugfelder H.O: Historical notes on loop theory.Comment. Math. Univ. Carolin. 41 2 (2000), 359-370. Zbl 1037.01010, MR 1780877
Reference: [20] Phillips J.D., Vojtěchovský P.: C-loops: An introduction.Publ. Math. Debrecen 2006 1-2 115-137. MR 2213546
Reference: [21] Phillips J.D., Vojtěchovský P.: The varieties of loops of Bol-Moufang type.Algebra Universalis 54 (2005), 3 259-271. Zbl 1102.20054, MR 2219409, 10.1007/s00012-005-1941-1
Reference: [22] Phillips J.D., Vojtěchovský P.: The varieties of quasigroups of Bol-Moufang type: An equational reasoning approach.J. Algebra 293 (2005), 17-33. Zbl 1101.20046, MR 2173964, 10.1016/j.jalgebra.2005.07.011
Reference: [23] : Problem 10888.American Mathematical Monthly 110, no. 4 (April 2003), 347. 10.2307/3647897
Reference: [24] Robinson D.A.: Bol loops.Trans. Amer. Math. Soc. 123 (1966), 341-354. Zbl 0163.02001, MR 0194545, 10.1090/S0002-9947-1966-0194545-4
Reference: [25] Schafer R.D.: An Introduction to Nonassociative Algebras.Pure and Applied Mathematics 22, Academic Press, New York-London, 1966. Zbl 0145.25601, MR 0210757
Reference: [26] Sharma B.L.: Left loops which satisfy the left Bol identity.Proc. Amer. Math. Soc. 61 (1976), 2 189-195. MR 0422480, 10.1090/S0002-9939-1976-0422480-4
Reference: [27] Sharma B.L.: Left loops which satisfy the left Bol identity II.Ann. Soc. Sci. Bruxelles Sér. I 91 (1977), 2 69-78. Zbl 0385.20044, MR 0444826
Reference: [28] Springer T.A., Veldkamp F.D.: Octonions, Jordan Algebras and Exceptional Groups.Springer Monographs in Mathematics, Springer, Berlin, 2000. Zbl 1087.17001, MR 1763974
Reference: [29] Smith W.D.: Inclusions among diassociativity-related loop properties.preprint.
Reference: [30] Tits J., Weiss R.M.: Moufang polygons.Springer Monographs in Mathematics, Springer, Berlin, 2002. Zbl 1010.20017, MR 1938841
Reference: [31] Ungar A.A.: Beyond Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces.Kluwer Academic Publishers, Dordrecht-Boston-London, 2001. MR 1978122
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-2_10.pdf 249.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo