Previous |  Up |  Next

Article

Title: Powers of elements in Jordan loops (English)
Author: Pula, Kyle
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 2
Year: 2008
Pages: 291-299
.
Category: math
.
Summary: A Jordan loop is a commutative loop satisfying the Jordan identity $(x^2 y)x = x^2(y x)$. We establish several identities involving powers in Jordan loops and show that there is no nonassociative Jordan loop of order $9$. (English)
Keyword: Jordan loop
Keyword: Jordan quasigroup
Keyword: well-defined powers
Keyword: nonassociative loop
Keyword: order of a loop
MSC: 20N05
idZBL: Zbl 1192.20060
idMR: MR2426893
.
Date available: 2009-05-05T17:11:23Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119723
.
Reference: [1] Bruck R.H.: A Survey of Binary Systems.Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, Vol. 20, Springer, Berlin, 1958. Zbl 0141.01401, MR 0093552
Reference: [2] Goodaire E.G., Keeping R.G.: Jordan loops and loop rings.preprint. MR 2376868
Reference: [3] Kinyon M.K., Pula J.K., Vojtěchovský P.: Admissible Orders of Jordan Loops.J. Combinatorial Designs, to appear.
Reference: [4] McCrimmon K.: A Taste of Jordan Algebras.Universitext, Springer, New York, 2004. Zbl 1044.17001, MR 2014924
Reference: [5] McCune W.W.: Mace4 Reference Manual and Guide.Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003; {http://www.cs.unm.edu/$^{\sim}$mccune/mace4/}.
Reference: [6] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-2_11.pdf 199.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo