Previous |  Up |  Next

Article

Keywords:
Jordan loop; Jordan quasigroup; well-defined powers; nonassociative loop; order of a loop
Summary:
A Jordan loop is a commutative loop satisfying the Jordan identity $(x^2 y)x = x^2(y x)$. We establish several identities involving powers in Jordan loops and show that there is no nonassociative Jordan loop of order $9$.
References:
[1] Bruck R.H.: A Survey of Binary Systems. Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, Vol. 20, Springer, Berlin, 1958. MR 0093552 | Zbl 0141.01401
[2] Goodaire E.G., Keeping R.G.: Jordan loops and loop rings. preprint. MR 2376868
[3] Kinyon M.K., Pula J.K., Vojtěchovský P.: Admissible Orders of Jordan Loops. J. Combinatorial Designs, to appear.
[4] McCrimmon K.: A Taste of Jordan Algebras. Universitext, Springer, New York, 2004. MR 2014924 | Zbl 1044.17001
[5] McCune W.W.: Mace4 Reference Manual and Guide. Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003; { http://www.cs.unm.edu/$^{\sim}$mccune/mace4/}
[6] Pflugfelder H.O.: Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. MR 1125767 | Zbl 0715.20043
Partner of
EuDML logo