Article
Keywords:
Jordan loop; Jordan quasigroup; well-defined powers; nonassociative loop; order of a loop
Summary:
A Jordan loop is a commutative loop satisfying the Jordan identity $(x^2 y)x = x^2(y x)$. We establish several identities involving powers in Jordan loops and show that there is no nonassociative Jordan loop of order  $9$.
References:
                        
[1] Bruck R.H.: 
A Survey of Binary Systems. Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, Vol. 20, Springer, Berlin, 1958. 
MR 0093552 | 
Zbl 0141.01401[2] Goodaire E.G., Keeping R.G.: 
Jordan loops and loop rings. preprint. 
MR 2376868[3] Kinyon M.K., Pula J.K., Vojtěchovský P.: Admissible Orders of Jordan Loops. J. Combinatorial Designs, to appear.
[6] Pflugfelder H.O.: 
Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. 
MR 1125767 | 
Zbl 0715.20043