Previous |  Up |  Next

Article

Title: Ternary quasigroups and the modular group (English)
Author: Smith, Jonathan D. H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 2
Year: 2008
Pages: 309-317
.
Category: math
.
Summary: For a positive integer $n$, the usual definitions of $n$-quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin $n$-cubes, or by $2n$ identities on $n+1$ different $n$-ary operations. In this paper, a more symmetrical approach to the specification of $n$-quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group. (English)
Keyword: quasigroup
Keyword: ternary quasigroup
Keyword: $n$-quasigroup
Keyword: heterogeneous algebra
Keyword: hyperidentity
Keyword: modular group
Keyword: conjugate
Keyword: parastrophe
Keyword: time reversal
MSC: 08A68
MSC: 20N05
MSC: 20N15
MSC: 20N20
idZBL: Zbl 1192.20064
idMR: MR2426895
.
Date available: 2009-05-05T17:11:33Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119725
.
Reference: [1] Chein O. et al.: Quasigroups and Loops: Theory and Applications.Heldermann, Berlin, 1990. Zbl 0719.20036, MR 1125806
Reference: [2] Coxeter H.S.M., Moser W.O.J.: Generators and Relations for Discrete Groups.Springer, Berlin, 1957. Zbl 0487.20023, MR 0088489
Reference: [3] Evans T.: Homomorphisms of non-associative systems.J. London Math. Soc. 24 (1949), 254-260. MR 0032664, 10.1112/jlms/s1-24.4.254
Reference: [4] Higgins P.J.: Algebras with a scheme of operators.Math. Nachr. 27 (1963), 115-132. Zbl 0117.25903, MR 0163940, 10.1002/mana.19630270108
Reference: [5] James I.M.: Quasigroups and topology.Math. Z. 84 (1964), 329-342. Zbl 0124.16104, MR 0165524
Reference: [6] Lugowski H.: Grundzüge der Universellen Algebra.Teubner, Leipzig, 1976. Zbl 0485.08001, MR 0441819
Reference: [7] Sade A.: Quasigroupes obéissant à certaines lois.Rev. Fac. Sci. Univ. Istanbul, Ser. A 22 (1957), 151-184. MR 0106253
Reference: [8] Serre, J.-P.: Cours d'Arithmétique.Presses Universitaires de France, Paris, 1970. Zbl 0432.10001, MR 0255476
Reference: [9] Smith J.D.H.: Axiomatization of quasigroups.Discuss. Math. Gen. Algebra Appl. 27 (2007), 21-33. Zbl 1135.20048, MR 2319330, 10.7151/dmgaa.1116
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-2_13.pdf 204.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo