Previous |  Up |  Next

Article

Title: Classification results in quasigroup and loop theory via a combination of automated reasoning tools (English)
Author: Sorge, Volker
Author: Colton, Simon
Author: McCasland, Roy
Author: Meier, Andreas
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 2
Year: 2008
Pages: 319-339
.
Category: math
.
Summary: We present some novel classification results in quasigroup and loop theory. For quasigroups up to size 5 and loops up to size 7, we describe a unique property which determines the isomorphism (and in the case of loops, the isotopism) class for any example. These invariant properties were generated using a variety of automated techniques --- including machine learning and computer algebra --- which we present here. Moreover, each result has been automatically verified, again using a variety of techniques --- including automated theorem proving, computer algebra and satisfiability solving --- and we describe our bootstrapping approach to the generation and verification of these classification results. (English)
Keyword: quasigroups
Keyword: loops
Keyword: classification
Keyword: automated reasoning
MSC: 20N05
MSC: 68T15
MSC: 68W30
MSC: 81T05
idZBL: Zbl 1192.20062
idMR: MR2426896
.
Date available: 2009-05-05T17:11:38Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119726
.
Reference: [1] Alur R., Peled D.: Computer Aided Verification.16$^{th}$ International Conference, CAV 2004, vol. 3114 of {LNCS}, Springer, Boston, MA, 2004. Zbl 1056.68003, MR 2164798
Reference: [2] Barrett C., Berezin S.: CVC Lite: A new implementation of the cooperating validity checker.in Alur and Peled 1, pp. 515-518. Zbl 1103.68605
Reference: [3] Colton S.: Automated Theory Formation in Pure Mathematics.Springer, 2002.
Reference: [4] Colton S., Bundy A., Walsh T.: Automatic identification of mathematical concepts.in Machine Learning: Proceedings of the 17th International Conference, 2000, pp.183-190.
Reference: [5] Colton S., Meier A., Sorge V., McCasland R.: Automatic Generation of classification theorems for finite algebras.in David Basin and Michael Rusinowitch, Eds., Automated Reasoning - 2nd International Joint Conference, IJCAR 2004, vol. 3097 of {LNAI}, Springer, Cork, Ireland, 2004, pp.400-414. Zbl 1126.68562, MR 2140374
Reference: [6] Colton S., Muggleton S.: Mathematical applications of inductive logic programming.Machine Learning 64 (2006), 25-64. Zbl 1103.68438, 10.1007/s10994-006-8259-x
Reference: [7] Falconer E.: Isotopy invariants in quasigroups.Trans. Amer. Math. Society 151 (1970), 511-526. Zbl 0209.04701, MR 0272932, 10.1090/S0002-9947-1970-0272932-4
Reference: [8] Ganzinger H., Hagen G., Nieuwenhuis R., Oliveras A., Tinelli C.: DPLL(T): Fast decision procedures.in Alur and Peled 1, pp. 175-188. Zbl 1103.68616, MR 2164816
Reference: [9] : The GAP Group.GAP - Groups, Algorithms, and Programming, Version 4.3, 2002, http://www.gap-system.org. Zbl 0319.10044
Reference: [10] Kronecker L.: Auseinandersetzung einiger Eigenschaften der Klassenanzahl idealer komplexer Zahlen.Monatsbericht der Berliner Akademie, pp. 881-889, 1870.
Reference: [11] McCune W.: Mace4 Reference Manual and Guide.Argonne National Laboratory, 2003. ANL/MCS-TM-264.
Reference: [12] McCune W.: Otter 3.3 Reference Manual.Technical Report ANL/MCS-TM-263, Argonne National Laboratory, 2003.
Reference: [13] Meier A., Sorge V.: Applying SAT solving in classification of finite algebras.J. Automat. Reason. 35 1-3 (2005), 201-235. Zbl 1109.68103, MR 2270355
Reference: [14] Mitchell T.: Machine Learning.McGraw Hill, New York, 1997. Zbl 0913.68167
Reference: [15] Moskewicz M., Madigan C., Zhao Y., Zhang L., Malik S.: Chaff: Engineering an efficient SAT solver.in Proc. of the 39$^{th}$ Design Automation Conference (DAC 2001), Las Vegas, 2001, pp. 530-535.
Reference: [16] Riazanov A., Voronkov A.: Vampire 1.1.in Rejeev Goré, Alexander Leitsch, and Tobias Nipkow, Eds., Automated Reasoning - 1st International Joint Conference, IJCAR 2001, vol. 2083 of {LNAI}, Springer, Siena, Italy, 2001, pp. 376-380. Zbl 0988.68607, MR 2064587
Reference: [17] Schulz S.: E: A Brainiac theorem prover.Journal of AI Communication 15 2-3 (2002), 111-126. Zbl 1020.68084
Reference: [18] Slaney J.: FINDER, Notes and Guide.Center for Information Science Research, Australian National University, 1995.
Reference: [19] Slaney J., Fujita M., Stickel M.: Automated reasoning and exhaustive search: Quasigroup existence problems.Comput. Math. Appl. 29 (1995), 115-132. Zbl 0827.20083, MR 1314247, 10.1016/0898-1221(94)00219-B
Reference: [20] Sorge V., Meier A., McCasland R., Colton S.: The automatic construction of isotopy invariants.in Third International Joint Conference on Automated Reasoning, 2006, pp.36-51. MR 2354671
Reference: [21] Weidenbach C., Brahm U., Hillenbrand T., Keen E., Theobald C., Topic D.: SPASS Version 2.0.in A. Voronkov, Ed., Proc. of the 18th International Conference on Automated Deduction (CADE-18), vol. 2392 of {LNAI}, Springer, Berlin, 2002, pp.275-279. Zbl 1072.68596, MR 2050385
Reference: [22] Zhang J., Zhang H.: SEM User's Guide.Department of Computer Science, University of Iowa, 2001.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-2_14.pdf 311.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo