Previous |  Up |  Next

Article

Title: Möbius gyrovector spaces in quantum information and computation (English)
Author: Ungar, Abraham A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 2
Year: 2008
Pages: 341-356
.
Category: math
.
Summary: Hyperbolic vectors, called gyrovectors, share analogies with vectors in Euclidean geometry. It is emphasized that the Bloch vector of Quantum Information and Computation (QIC) is, in fact, a gyrovector related to Möbius addition rather than a vector. The decomplexification of Möbius addition in the complex open unit disc of a complex plane into an equivalent real Möbius addition in the open unit ball $\Bbb B^2$ of a Euclidean 2-space $\Bbb R^2$ is presented. This decomplexification proves useful, enabling the resulting real Möbius addition to be generalized into the open unit ball $\Bbb B^n$ of a Euclidean $n$-space $\Bbb R^n$ for all $n\ge2$. Similarly, the decomplexification of the complex $2\times 2$ qubit density matrix of QIC, which is parametrized by the real, 3-dimensional Bloch gyrovector, into an equivalent (in a specified sense) real $4\times 4$ matrix is presented. As in the case of Möbius addition, this decomplexification proves useful, enabling the resulting real matrix to be generalized into a corresponding matrix parametrized by a real, $n$-dimensional Bloch gyrovector, for all $n\ge 2$. The applicability of the $n$-dimensional Bloch gyrovector with $n=3$ to QIC is well known. The problem as to whether the $n$-dimensional Bloch gyrovector with $n>3$ is applicable to QIC as well remains to be explored. (English)
Keyword: quantum information
Keyword: Bloch vector
Keyword: density matrix
Keyword: hyperbolic geometry
Keyword: gyrogroups
Keyword: gyrovector spaces
MSC: 51M10
MSC: 51P05
MSC: 81P15
MSC: 81P68
idZBL: Zbl 1212.51013
idMR: MR2426897
.
Date available: 2009-05-05T17:11:43Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119727
.
Reference: [1] Ahlfors L.V.: Conformal Invariants: Topics in Geometric Function Theory.McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. Zbl 0272.30012, MR 0357743
Reference: [2] Altepeter J.B., James D.F.V., Kwiat P.G.: Qubit quantum state tomography.in Quantum State Estimation, Lecture Notes in Phys., vol. 649, Springer, Berlin, 2004, pp.113-145. Zbl 1092.81511, MR 2180163, 10.1007/978-3-540-44481-7_4
Reference: [3] Arvind, Mallesh K.S., Mukunda N.: A generalized Pancharatnam geometric phase formula for three-level quantum systems.J. Phys. A 30 7 2417-2431 (1997). MR 1457387, 10.1088/0305-4470/30/7/021
Reference: [4] Chen J.-L., Ungar A.A.: The Bloch gyrovector.Found. Phys. 32 4 531-565 (2002). MR 1903786, 10.1023/A:1015032332156
Reference: [5] Chruściński D., Jamiołkowski A.: Geometric Phases in Classical and Quantum Mechanics.Progress in Mathematical Physics, vol. 36, Birkhäuser Boston Inc., Boston, MA, 2004.
Reference: [6] Feder T.: Strong near subgroups and left gyrogroups.J. Algebra 259 1 177-190 (2003). Zbl 1019.20031, MR 1953714, 10.1016/S0021-8693(02)00536-7
Reference: [7] Fisher S.D.: Complex Variables.corrected reprint of the second (1990) edition, Dover Publications Inc., Mineola, NY, 1999. Zbl 1079.30500, MR 1702283
Reference: [8] Foguel T., Ungar A.A.: Involutory decomposition of groups into twisted subgroups and subgroups.J. Group Theory 3 1 27-46 (2000). Zbl 0944.20053, MR 1736515, 10.1515/jgth.2000.003
Reference: [9] Foguel T., Ungar A.A.: Gyrogroups and the decomposition of groups into twisted subgroups and subgroups.Pacific J. Math 197 1 1-11 (2001). Zbl 1066.20068, MR 1810204, 10.2140/pjm.2001.197.1
Reference: [10] Greene R.E., Krantz S.G.: Function Theory of One Complex Variable.A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1997. Zbl 1114.30001, MR 1443431
Reference: [11] Hausner M.: A Vector Space Approach to Geometry.reprint of the 1965 original, Dover Publications Inc., Mineola, NY, 1998. Zbl 0924.51001, MR 1651732
Reference: [12] James D.F.V., Kwiat P.G., Munro W.J., White A.G.: Volume of the set of separable states.Phys. Rev. A (3) 58 2 883-892 (1998).
Reference: [13] Kinyon M.K., Ungar A.A.: The gyro-structure of the complex unit disk.Math. Mag. 73 4 273-284 (2000). MR 1822756, 10.2307/2690974
Reference: [14] Korányi A.: Around the finite-dimensional spectral theorem.Amer. Math. Monthly 108 2 120-125 (2001). Zbl 1012.15007, MR 1818185, 10.2307/2695525
Reference: [15] Lévay P.: The geometry of entanglement: metrics, connections and the geometric phase.J. Phys. A 37 5 1821-1841 (2004). Zbl 1067.81049, MR 2044194, 10.1088/0305-4470/37/5/024
Reference: [16] Lévay P.: Thomas rotation and the mixed state geometric phase.J. Phys. A 37 16 4593-4605 (2004). Zbl 1062.81067, MR 2065947, 10.1088/0305-4470/37/16/009
Reference: [17] Marsden J.E.: Elementary Classical Analysis. With the assistance of Michael Buchner, Amy Erickson, Adam Hausknecht, Dennis Heifetz, Janet Macrae and William Wilson, and with contributions by Paul Chernoff, István Fáry and Robert Gulliver; W.H. Freeman and Co., San Francisco, 1974.. MR 0357693
Reference: [18] Needham T.: Visual Complex Analysis.The Clarendon Press, Oxford University Press, New York, 1997. Zbl 1095.30500, MR 1446490
Reference: [19] Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information.Cambridge University Press, Cambridge, 2000. Zbl 1049.81015, MR 1796805
Reference: [20] Ungar A.A.: Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces.Fundamental Theories of Physics, vol. 117, Kluwer Academic Publishers Group, Dordrecht, 2001. Zbl 0972.83002, MR 1978122
Reference: [21] Ungar A.A.: The density matrix for mixed state qubits and hyperbolic geometry.Quantum Inf. Comput. 2 6 513-514 (2002). Zbl 1152.81823, MR 1945452
Reference: [22] Ungar A.A.: The hyperbolic geometric structure of the density matrix for mixed state qubits.Found. Phys. 32 11 1671-1699 2002. MR 1954912, 10.1023/A:1021446605657
Reference: [23] Ungar A.A.: Analytic Hyperbolic Geometry: Mathematical Foundations and Applications.World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. Zbl 1089.51003, MR 2169236
Reference: [24] Ungar A.A.: Gyrogroups, the grouplike loops in the service of hyperbolic geometry and Einstein's special theory of relativity.Quasigroups Related Systems 15 141-168 (2007). Zbl 1147.20055, MR 2379129
Reference: [25] Ungar A.A.: The hyperbolic square and Möbius transformations.Banach J. Math. Anal. 1 1 101-116 (2007). Zbl 1129.30027, MR 2350199
Reference: [26] Ungar A.A.: Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity.World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. Zbl 1147.83004, MR 2169236
Reference: [27] Ungar A.A.: From Möbius to gyrogroups.Amer. Math. Monthly 115 2 138-144 (2008). Zbl 1152.30045, MR 2384266
Reference: [28] Urbantke H.: Two-level quantum systems: States, phases, and holonomy.Amer. J. Phys. 59 6 503-509 (1991). 10.1119/1.16809
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-2_15.pdf 274.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo