Title:
|
Product of vector measures on topological spaces (English) |
Author:
|
Khurana, Surjit Singh |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
49 |
Issue:
|
3 |
Year:
|
2008 |
Pages:
|
421-435 |
. |
Category:
|
math |
. |
Summary:
|
For $i=(1,2)$, let $X_{i}$ be completely regular Hausdorff spaces, $E_{i}$ quasi-complete locally convex spaces, $E=E_{1}\Breve{\otimes }E_{2}$, the completion of the their injective tensor product, $C_{b}(X_{i})$ the spaces of all bounded, scalar-valued continuous functions on $X_{i}$, and $\mu_{i}$ $E_{i}$-valued Baire measures on $X_{i}$. Under certain conditions we determine the existence of the $E$-valued product measure $\mu_{1}\otimes \mu_{2}$ and prove some properties of these measures. (English) |
Keyword:
|
injective tensor product |
Keyword:
|
product of measures |
Keyword:
|
tight measures |
Keyword:
|
$\tau$-smooth measures |
Keyword:
|
separable measures |
Keyword:
|
Fubini theorem |
MSC:
|
28B05 |
MSC:
|
28C05 |
MSC:
|
28C15 |
MSC:
|
46A08 |
MSC:
|
46E10 |
MSC:
|
46G10 |
MSC:
|
46G12 |
MSC:
|
60B05 |
idZBL:
|
Zbl 1212.46064 |
idMR:
|
MR2490437 |
. |
Date available:
|
2009-05-05T17:12:09Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119733 |
. |
Reference:
|
[1] Babiker A.G., Knowles J.D.: Functions and measures on product spaces.Mathematika 32 (1985), 60-67. Zbl 0578.28004, MR 0817109, 10.1112/S0025579300010871 |
Reference:
|
[2] Diestel J., Uhl J.J.: Vector Measures.Mathematical Surveys, no. 15, American Mathematical Society, Providence, R.I., 1977. Zbl 0521.46035, MR 0453964 |
Reference:
|
[3] Duchoň M., Kluvánek I.: Inductive tensor product of vector-valued measures.Mat. Časopis Sloven. Akad. Vied 17 (1967), 108-112 20 (1972), 269-286. MR 0229786 |
Reference:
|
[4] Fremlin D., Garling D., Haydon R.: Bounded measures on topological spaces.Proc. Lon. Math. Soc. 25 (1972), 115-136. Zbl 0236.46025, MR 0344405, 10.1112/plms/s3-25.1.115 |
Reference:
|
[5] Freniche F.J., García-Vázquez J.C.: The Bartle bilinear integration and Carleman operators.J. Math. Anal. Appl. 240 (1999), 324-339. MR 1731648, 10.1006/jmaa.1999.6575 |
Reference:
|
[6] Grothendieck A.: Sur les applicationes linéaires faiblement compactes d'espaces du type $C(K)$.Canadian J. Math. 5 (1953), 129-173. MR 0058866, 10.4153/CJM-1953-017-4 |
Reference:
|
[7] Jarchow H.: Locally Convex Spaces.B.G. Teubner, Stuttgart, 1981. Zbl 0466.46001, MR 0632257 |
Reference:
|
[8] Khurana S.S.: Topologies on spaces of continuous vector-valued functions.Trans Amer. Math. Soc. 241 (1978), 195-211. MR 0492297, 10.1090/S0002-9947-1978-0492297-X |
Reference:
|
[9] Khurana S.S.: Topologies on spaces of continuous vector-valued functions II.Math. Ann. 234 (1978), 159-166. MR 0494178, 10.1007/BF01420966 |
Reference:
|
[10] Khurana S.S.: A topology associated with vector measures.J. Indian Math. Soc. 45 (1981), 167-179. MR 0828869 |
Reference:
|
[11] Khurana S.S.: Vector measures on topological spaces.Georgian Math. J., to appear. Zbl 1164.60002, MR 2389030 |
Reference:
|
[12] Kluvánek I, Knowles G.: Vector Measures and Control Systems.North-Holland Publishing Co., Amsterdam; American Elsevier Publishing Co., New York, 1976. MR 0499068 |
Reference:
|
[13] Lewis D.R.: Integration with respect to vector measures.Pacific J. Math. 33 (1970), 157-165. Zbl 0195.14303, MR 0259064, 10.2140/pjm.1970.33.157 |
Reference:
|
[14] Phelps R.R.: Lectures on Choquet Theorem.Van Nostrand, Princeton, 1966. MR 0193470 |
Reference:
|
[15] Schaefer H.H.: Topological Vector Spaces.Springer, New York-Berlin, 1971. Zbl 0983.46002, MR 0342978 |
Reference:
|
[16] Sentilles F.D.: Bounded continuous functions on completely regular spaces.Trans. Amer. Math. Soc. 168 (1972), 311-336. MR 0295065, 10.1090/S0002-9947-1972-0295065-1 |
Reference:
|
[17] Wheeler R.F.: Survey of Baire measures and strict topologies.Exposition. Math. 1 (1983), 2 97-190. Zbl 0522.28009, MR 0710569 |
Reference:
|
[18] Varadarajan V.S.: Measures on topological spaces.Amer. Math. Soc. Transl. (2) 48 (1965), 161-220. |
. |