Previous |  Up |  Next

Article

Keywords:
semidiscretizations; discretizations; heat equations; quenching; semidiscrete quenching time; convergence
Summary:
This paper concerns the study of the numerical approximation for the following boundary value problem: $$ \cases u_t(x,t)-u_{xx}(x,t) = -u^{-p}(x,t), & 0<x<1, t>0, \ u_{x}(0,t)=0, & u(1,t)=1, t>0, \ u(x,0)=u_{0}(x)>0, & 0\leq x \leq 1, \endcases $$ where $p>0$. We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis.
References:
[1] Abia L.M., López-Marcos J.C., Martinez J.: On the blow-up time convergence of semidiscretizations of reaction-diffusion equations. Appl. Numer. Math. 26 (1998), 399-414. DOI 10.1016/S0168-9274(97)00105-0 | MR 1612360
[2] Acker A., Kawohl B.: Remarks on quenching. Nonlinear Anal. 13 (1989), 53-61. DOI 10.1016/0362-546X(89)90034-5 | MR 0973368 | Zbl 0676.35021
[3] Boni T.K.: Extinction for discretizations of some semilinear parabolic equations. C.R. Acad. Sci. Paris Sér. I Math. 333 (2001), 795-800. DOI 10.1016/S0764-4442(01)02078-X | MR 1868956 | Zbl 0999.35004
[4] Boni T.K.: On quenching of solutions for some semilinear parabolic equations of second order. Bull. Belg. Math. Soc. Simon Stevin 7 (2000), 73-95. MR 1741748 | Zbl 0969.35077
[5] Fila M., Kawohl B., Levine H.A.: Quenching for quasilinear equations. Comm. Partial Differential Equations 17 (1992), 593-614. MR 1163438 | Zbl 0801.35057
[6] Guo J.S., Hu B.: The profile near quenching time for the solution of a singular semilinear heat equation. Proc. Edinburgh Math. Soc. 40 (1997), 437-456. MR 1475908 | Zbl 0903.35007
[7] Guo J.: On a quenching problem with Robin boundary condition. Nonlinear Anal. 17 (1991), 803-809. DOI 10.1016/0362-546X(91)90154-S | MR 1131490
[8] Levine H.A.: Quenching, nonquenching and beyond quenching for solutions of some parabolic equations. Annali Mat. Pura Appl. 155 (1990), 243-260. MR 1042837
Partner of
EuDML logo