Article
Keywords:
associative rings; unipotent elements
Summary:
Let $R$ be an associative ring with 1 and $R^{\times}$ the multiplicative group of invertible elements of $R$. In the paper, subgroups of $R^{\times}$ which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group.
References:
                        
[5] Dieudonné J.: La Géométrie des Groups Classiques. Ergebnisser der Mathematik, Springer, Berlin-New York, 1997.
[6] Dixon J.D.: 
The Structure of Linear Groups. Van Nostrand Reinhold Company, London, 1971. 
Zbl 0232.20079[9] King O.H.: 
On subgroups of the special linear group containing the special unitary group. Geom. Dedicata 19 (1985), 3 297-310. 
MR 0815209 | 
Zbl 0579.20040[10] O'Meara O.T.: 
Symplectic Groups. American Mathematical Society, Providence, R.I., 1978. 
MR 0502254 | 
Zbl 0383.20001[11] Zalesskiĭ A.E., Serežkin V.N.: 
Linear groups generated by transvections. Izv. Akad. Nauk SSSR. Ser. Mat. 40 (1976), 1 26-49. 
MR 0412295