Previous |  Up |  Next

Article

Title: On groups of similitudes in associative rings (English)
Author: Bashkirov, Evgenii L.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 4
Year: 2008
Pages: 525-531
.
Category: math
.
Summary: Let $R$ be an associative ring with 1 and $R^{\times}$ the multiplicative group of invertible elements of $R$. In the paper, subgroups of $R^{\times}$ which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group. (English)
Keyword: associative rings
Keyword: unipotent elements
MSC: 16U60
MSC: 20H25
idZBL: Zbl 1192.16034
idMR: MR2493935
.
Date available: 2009-05-05T17:12:56Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119743
.
Reference: [1] Bashkirov E.L.: Linear groups that contain a root subgroup.Siberian Math. J. 37 (1996), 5 754-759. MR 1440380, 10.1007/BF02106733
Reference: [2] Bashkirov E.L.: Irreducible linear groups of degree four over a quaternion division algebra that contain a subgroup diag$(T_{3}(K,\Phi_{0}),1)$.J. Algebra 287 (2005), 2 319-350. Zbl 1088.20030, MR 2134148, 10.1016/j.jalgebra.2004.09.006
Reference: [3] Bashkirov E.L.: Irreducible linear groups of degree four over a quaternion division algebra that contain a root subgroup.Comm. Algebra 34 (2006), 6 1931-1948. Zbl 1110.20038, MR 2235072, 10.1080/00927870500454802
Reference: [4] Bashkirov E.L.: Completely reducible linear groups over a quaternion division algebra that contain a root subgroup.Comm. Algebra 35 (2007), 3 1019-1054. Zbl 1118.20049, MR 2305248, 10.1080/00927870601074798
Reference: [5] Dieudonné J.: La Géométrie des Groups Classiques.Ergebnisser der Mathematik, Springer, Berlin-New York, 1997.
Reference: [6] Dixon J.D.: The Structure of Linear Groups.Van Nostrand Reinhold Company, London, 1971. Zbl 0232.20079
Reference: [7] Dye R.H.: Maximal subgroups of ${GL}_{2n}(K)$, ${SL}_{2n}(K)$, ${PGL}_{2n}(K)$ and ${PSL}_{2n}(K)$ associated with symplectic polarities.J. Algebra 66 (1980), 1 1-11. Zbl 0444.20036, MR 0591244, 10.1016/0021-8693(80)90110-6
Reference: [8] King O.H.: On subgroups of the special linear group containing the special orthogonal group.J. Algebra 96 (1985), 1 178-193. Zbl 0572.20028, MR 0808847, 10.1016/0021-8693(85)90045-6
Reference: [9] King O.H.: On subgroups of the special linear group containing the special unitary group.Geom. Dedicata 19 (1985), 3 297-310. Zbl 0579.20040, MR 0815209
Reference: [10] O'Meara O.T.: Symplectic Groups.American Mathematical Society, Providence, R.I., 1978. Zbl 0383.20001, MR 0502254
Reference: [11] Zalesskiĭ A.E., Serežkin V.N.: Linear groups generated by transvections.Izv. Akad. Nauk SSSR. Ser. Mat. 40 (1976), 1 26-49. MR 0412295
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-4_1.pdf 195.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo