| Title: | On groups of similitudes in associative rings (English) | 
| Author: | Bashkirov, Evgenii L. | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 49 | 
| Issue: | 4 | 
| Year: | 2008 | 
| Pages: | 525-531 | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $R$ be an associative ring with 1 and $R^{\times}$ the multiplicative group of invertible elements of $R$. In the paper, subgroups of $R^{\times}$ which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group. (English) | 
| Keyword: | associative rings | 
| Keyword: | unipotent elements | 
| MSC: | 16U60 | 
| MSC: | 20H25 | 
| idZBL: | Zbl 1192.16034 | 
| idMR: | MR2493935 | 
| . | 
| Date available: | 2009-05-05T17:12:56Z | 
| Last updated: | 2013-09-22 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119743 | 
| . | 
| Reference: | [1] Bashkirov E.L.: Linear groups that contain a root subgroup.Siberian Math. J. 37 (1996), 5 754-759. MR 1440380, 10.1007/BF02106733 | 
| Reference: | [2] Bashkirov E.L.: Irreducible linear groups of degree four over a quaternion division algebra that contain a subgroup diag$(T_{3}(K,\Phi_{0}),1)$.J. Algebra 287 (2005), 2 319-350. Zbl 1088.20030, MR 2134148, 10.1016/j.jalgebra.2004.09.006 | 
| Reference: | [3] Bashkirov E.L.: Irreducible linear groups of degree four over a quaternion division algebra that contain a root subgroup.Comm. Algebra 34 (2006), 6 1931-1948. Zbl 1110.20038, MR 2235072, 10.1080/00927870500454802 | 
| Reference: | [4] Bashkirov E.L.: Completely reducible linear groups over a quaternion division algebra that contain a root subgroup.Comm. Algebra 35 (2007), 3 1019-1054. Zbl 1118.20049, MR 2305248, 10.1080/00927870601074798 | 
| Reference: | [5] Dieudonné J.: La Géométrie des Groups Classiques.Ergebnisser der Mathematik, Springer, Berlin-New York, 1997. | 
| Reference: | [6] Dixon J.D.: The Structure of Linear Groups.Van Nostrand Reinhold Company, London, 1971. Zbl 0232.20079 | 
| Reference: | [7] Dye R.H.: Maximal subgroups of ${GL}_{2n}(K)$, ${SL}_{2n}(K)$, ${PGL}_{2n}(K)$ and ${PSL}_{2n}(K)$ associated with symplectic polarities.J. Algebra 66 (1980), 1 1-11. Zbl 0444.20036, MR 0591244, 10.1016/0021-8693(80)90110-6 | 
| Reference: | [8] King O.H.: On subgroups of the special linear group containing the special orthogonal group.J. Algebra 96 (1985), 1 178-193. Zbl 0572.20028, MR 0808847, 10.1016/0021-8693(85)90045-6 | 
| Reference: | [9] King O.H.: On subgroups of the special linear group containing the special unitary group.Geom. Dedicata 19 (1985), 3 297-310. Zbl 0579.20040, MR 0815209 | 
| Reference: | [10] O'Meara O.T.: Symplectic Groups.American Mathematical Society, Providence, R.I., 1978. Zbl 0383.20001, MR 0502254 | 
| Reference: | [11] Zalesskiĭ A.E., Serežkin V.N.: Linear groups generated by transvections.Izv. Akad. Nauk SSSR. Ser. Mat. 40 (1976), 1 26-49. MR 0412295 | 
| . |