[1] Busakhla N.Yu.: 
Measurable bundles of Dedekind logics. Uzbek. Mat. Zh. no. 3 (1999), 29-34 (Russian). 
MR 1804809[3] Ganiev I.G.: 
Measurable bundles of lattices and their applications. Investigations in Functional Analysis and its Applications, Nauka, Moscow, 2006, pp.9-49 (Russian). 
MR 2272750[4] Gutman A.E.: 
Banach bundles in the theory of lattice-normed spaces. Order-compatible Linear Operators, Trudy Inst. Mat. 29 (1995), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 1995, pp.63-211 (Russian). 
MR 1774033 | 
Zbl 0854.46006[6] Krein S.G., Petunin Yu.T., Semenov E.M.: 
Interpolation of Linear Operators. Nauka, Moscow, 1978 (Russian); English translation: Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, 1982. 
MR 0506343[8] Kusraev A.G.: 
Dominated Operators. Mathematics and its Applications, 519, Kluwer Academic Publishers, Dordrecht, 2000. 
MR 1793005 | 
Zbl 1045.47001[9] Lacey H.E.: 
The Isometric Theory of Classical Banach Spaces. Springer, New York-Heidelberg, 1974. 
MR 0493279 | 
Zbl 0285.46024[10] Sarymsakov T.A.: 
Topological Semifields and their Applications. Fan, Tashkent, 1989 (Russian). 
MR 1200017 | 
Zbl 0791.54051[12] Vulikh B.Z.: 
Introduction to the Theory of Partially Ordered Spaces. Fizmatgiz, Moscow, 1961 (Russian); English translation: Wolters-Noordhoff, Groningen, 1967. 
MR 0224522 | 
Zbl 0186.44601[13] Zakirov B.S.: 
The Luxemburg norm in the Orlicz-Kantorovich space. Uzbek. Mat. Zh. no. 2 (2007), 32-44 (Russian). 
MR 2568484[14] Zakirov B.S.: 
Orlicz-Kantorovich lattices associated with an $L_0$-valued measure. Uzbek. Mat. Zh. no. 4 (2007), 18-34 (Russian). 
MR 2569170 | 
Zbl 1190.46035[15] Zakirov B.S.: 
Analytical representation of $L_0$-valued homomorphisms in Orlicz-Kantorovich modules. Mat. Trudy 10 (2007), 2 112-141 (Russian). 
MR 2382419