Previous |  Up |  Next

Article

Title: Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$ (English)
Author: Pavlíková, Elena
Language: English
Journal: Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika
ISSN: 0231-6048
Volume: 21
Issue: 1
Year: 1982
Pages: 69-78
Summary lang: Slovak
Summary lang: Russian
.
Category: math
.
MSC: 34A30
MSC: 34C10
MSC: 34C20
idZBL: Zbl 0522.34033
idMR: MR0702609
.
Date available: 2009-01-29T15:25:23Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120121
.
Reference: [1] M. Háčik: Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation $y'' + q(t)y = 0$ with regard to the basis $\alpha, \beta$.Arch. Math. 8, Brno, (1972), 79-83. MR 0326063
Reference: [2] M. Laitoch: L’équation associeé dans la théorie des transformations des équations différentielles du second ordre.Acta Univ. Palack. Olomucensis, TOM 12 (1963), 45-62. Zbl 0256.34005, MR 0276527
Reference: [3] L. Lorch M. Muldoon P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions. IV.Canad. Journal of Math., XXIV (1972), 349-368. MR 0298113
Reference: [4] E. Pavlíková: Higher monotonicity properties of certain Sturm-Liouville functions.Archivum Mathematicum, Brno, (to appear). MR 0672321
Reference: [5] J. Vosmanský: Certain higher monotonicity properties of Bessel functions.Arch. Math. 1, Brno, (1977), 55-64. MR 0463571
Reference: [6] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of $y'' + a(t)y' + b(t)y = 0$.Arch. Math. 2, Brno, (1974), 87-102. MR 0399578
.

Files

Files Size Format View
ActaOlom_21-1982-1_7.pdf 1.317Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo