Previous |  Up |  Next

Article

Title: Some properties of interpolating quadratic spline (English)
Title: Některé vlastnosti interpolujícího kvadratického splajnu (Czech)
Author: Kobza, Jiří
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 29
Issue: 1
Year: 1990
Pages: 45-64
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
MSC: 41A05
MSC: 41A15
MSC: 65D07
idZBL: Zbl 0748.41006
idMR: MR1144830
.
Date available: 2009-01-29T15:35:58Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120243
.
Reference: [1] Ahlberg J.H., Nilson E.N., Walsh J.L.: The Theory of Splines and Their Applications.Acad. Press 1967. Zbl 0158.15901, MR 0239327
Reference: [2] de Boor C.: A Practical Guide to Splines.Springer, 1978. Zbl 0406.41003, MR 0507062
Reference: [3] Fiedler M.: Speciální matice a jejich použití v numerické matematice.SNTL Praha, 1981. Zbl 0531.65008
Reference: [4] Kammerer W.J., Reddien G.W., Varga L.S.: Quadratic interpolatory splines.Numer. Mathematik 22 (1974), 241-259. Zbl 0271.65006, MR 0381235
Reference: [5] Kobza J.: On algorithms for parabolic splines.Acta UPO, FRN, Vol. 88, Math. XXVI, pp.169-185. Zbl 0693.65005, MR 1033338
Reference: [6] Kobza J.: An algorithm for biparabolic spline.Aplikace matematiky, 32 (1987), 401-413. Zbl 0635.65006, MR 0909546
Reference: [7] Kobza J.: Evaluation and mapping of parabolic interpolating spline.Knižnica algoritmov, IX.diel, 51-58; JSMF Bratislava 1987.
Reference: [8] Kobza J.: Natural and smoothing quadratic spline.To appear in Aplikace matematiky. Zbl 0731.65006
Reference: [9] Laurent P.J.: Approximation et Optimization.Hermann, Paris 1972. MR 0467080
Reference: [10] Maess B., Maess G.: Interpolating quadratic splines with norm-minimal curvature.Rostock. Math. Kolloq. 26 (1984), 83-88. Zbl 0551.65003, MR 0778184
Reference: [11] Maess G.: Smooth interpolation of curves and surfaces by quadratic splines with minim al curvature.Numerical Methods and Applications ’84, Sofia 1985, 75-81.
Reference: [12] Marsden M.J.: Quadratic spline interpolation.Bull.AMS, 80 (1974), 903-906. Zbl 0295.41005, MR 0358154
Reference: [13] McAllister D.F., Passow E., Roulier J.A.: Algorithms for computing shape preserving spline interpolation to data.Mathematics of Computations, 31 (1977), 717-725. MR 0448805
Reference: [14] McAllister D.F., Roulier J.A.: An algorithm for computing a shape-preserving oscilatory quadratic spline.ACM Trans. Math. Software 7 (1981), 331-347, 384-386 (Alg.574). MR 0630439
Reference: [15] Passow E.: Monotone quadratic spline.Journal Approx.Theory 19 (1977), 143-147. Zbl 0361.41005, MR 0440246
Reference: [16] Schumaker L.: On shape preserving quadratic spline interpolation.SIAM J. Num. Anal. 20 (1983), 854-864. Zbl 0521.65009, MR 0708462
Reference: [17] Стечкин C. B., Сыбботин Ю. H.: Сплейны в вычислительной математике.Hayкa, Mocква 1976. Zbl 1226.05083
Reference: [18] Завьялов Ю. C., Квасов B. И., Мирошниченко B. Л.: Методы сплейн функций.Hayкa, Mocква 1980. Zbl 1229.60003
Reference: [19] Завьялов Ю. C., Леус В. А., Cкороспелов B. A.: Сплейны в инженерной геометрии.Машиностроение, Mocква 1985. Zbl 1223.81144
.

Files

Files Size Format View
ActaOlom_29-1990-1_4.pdf 1.761Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo