Title:
|
Some properties of interpolating quadratic spline (English) |
Title:
|
Některé vlastnosti interpolujícího kvadratického splajnu (Czech) |
Author:
|
Kobza, Jiří |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
29 |
Issue:
|
1 |
Year:
|
1990 |
Pages:
|
45-64 |
Summary lang:
|
Czech |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
MSC:
|
41A05 |
MSC:
|
41A15 |
MSC:
|
65D07 |
idZBL:
|
Zbl 0748.41006 |
idMR:
|
MR1144830 |
. |
Date available:
|
2009-01-29T15:35:58Z |
Last updated:
|
2012-05-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/120243 |
. |
Reference:
|
[1] Ahlberg J.H., Nilson E.N., Walsh J.L.: The Theory of Splines and Their Applications.Acad. Press 1967. Zbl 0158.15901, MR 0239327 |
Reference:
|
[2] de Boor C.: A Practical Guide to Splines.Springer, 1978. Zbl 0406.41003, MR 0507062 |
Reference:
|
[3] Fiedler M.: Speciální matice a jejich použití v numerické matematice.SNTL Praha, 1981. Zbl 0531.65008 |
Reference:
|
[4] Kammerer W.J., Reddien G.W., Varga L.S.: Quadratic interpolatory splines.Numer. Mathematik 22 (1974), 241-259. Zbl 0271.65006, MR 0381235 |
Reference:
|
[5] Kobza J.: On algorithms for parabolic splines.Acta UPO, FRN, Vol. 88, Math. XXVI, pp.169-185. Zbl 0693.65005, MR 1033338 |
Reference:
|
[6] Kobza J.: An algorithm for biparabolic spline.Aplikace matematiky, 32 (1987), 401-413. Zbl 0635.65006, MR 0909546 |
Reference:
|
[7] Kobza J.: Evaluation and mapping of parabolic interpolating spline.Knižnica algoritmov, IX.diel, 51-58; JSMF Bratislava 1987. |
Reference:
|
[8] Kobza J.: Natural and smoothing quadratic spline.To appear in Aplikace matematiky. Zbl 0731.65006 |
Reference:
|
[9] Laurent P.J.: Approximation et Optimization.Hermann, Paris 1972. MR 0467080 |
Reference:
|
[10] Maess B., Maess G.: Interpolating quadratic splines with norm-minimal curvature.Rostock. Math. Kolloq. 26 (1984), 83-88. Zbl 0551.65003, MR 0778184 |
Reference:
|
[11] Maess G.: Smooth interpolation of curves and surfaces by quadratic splines with minim al curvature.Numerical Methods and Applications ’84, Sofia 1985, 75-81. |
Reference:
|
[12] Marsden M.J.: Quadratic spline interpolation.Bull.AMS, 80 (1974), 903-906. Zbl 0295.41005, MR 0358154 |
Reference:
|
[13] McAllister D.F., Passow E., Roulier J.A.: Algorithms for computing shape preserving spline interpolation to data.Mathematics of Computations, 31 (1977), 717-725. MR 0448805 |
Reference:
|
[14] McAllister D.F., Roulier J.A.: An algorithm for computing a shape-preserving oscilatory quadratic spline.ACM Trans. Math. Software 7 (1981), 331-347, 384-386 (Alg.574). MR 0630439 |
Reference:
|
[15] Passow E.: Monotone quadratic spline.Journal Approx.Theory 19 (1977), 143-147. Zbl 0361.41005, MR 0440246 |
Reference:
|
[16] Schumaker L.: On shape preserving quadratic spline interpolation.SIAM J. Num. Anal. 20 (1983), 854-864. Zbl 0521.65009, MR 0708462 |
Reference:
|
[17] Стечкин C. B., Сыбботин Ю. H.: Сплейны в вычислительной математике.Hayкa, Mocква 1976. Zbl 1226.05083 |
Reference:
|
[18] Завьялов Ю. C., Квасов B. И., Мирошниченко B. Л.: Методы сплейн функций.Hayкa, Mocква 1980. Zbl 1229.60003 |
Reference:
|
[19] Завьялов Ю. C., Леус В. А., Cкороспелов B. A.: Сплейны в инженерной геометрии.Машиностроение, Mocква 1985. Zbl 1223.81144 |
. |