Previous |  Up |  Next

Article

Title: On a third-order three-point regular boundary value problem (English)
Author: Šenkyřík, Martin
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 30
Issue: 1
Year: 1991
Pages: 75-86
.
Category: math
.
MSC: 34B10
MSC: 34B15
idZBL: Zbl 0752.34017
idMR: MR1166427
.
Date available: 2009-01-29T15:37:25Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120268
.
Reference: [1] Agarwal R.P.: On boundary value problems y" = f(x,y,y ', y ").Bull. of the Institute of Math. Sinica, 12 (1984), 153-157. MR 0765109
Reference: [2] Barr D., Sherman T.: Existence and uniqueness of solutions of three-point boundary value problems.J. Diff. Eqs. 13 (1973), 197-212. Zbl 0261.34014, MR 0333326
Reference: [3] Bebernes J.: A sub-function approach to boundary value problems for nonlinear ordinary differential equations.Pacif. J. Math. 13 (1963), 1063-1066. MR 0156018
Reference: [4] Carristi G.: A three-point boundary value problem for a third order differential equation.Boll. Unione Mat. Ital., C4, 1 (1985), 259-269. MR 0805218
Reference: [5] Das K.M., Lalli B.S.: Boundary value problems for y'"= f(x,y,y',y").J. Math. Anal. Appl., 81 (1981), 300-307. MR 0622819
Reference: [6] Gaines R.E., Mawhin J.L.: Coincidence Degree and Nonlinear Differential Equations.Berlin-Heidelberg-New York, Springer-Verlag, 1977. Zbl 0339.47031, MR 0637067
Reference: [7] Gupta C.P.: On a third-order three-point boundary value problem at resonance.Diff. Int. Equations, Vol 2, 1 (1989) 1-12. Zbl 0722.34014, MR 0960009
Reference: [8] Hardy G.H., Littlewood J.E., Polya G.: Inequalities.(Russian trans.), IL, Moscow, 1970.
Reference: [9] Hartman P.: Ordinary Differential Equations.(Russian trans.), Mir, Moscow, 1970. Zbl 0214.09101, MR 0352574
Reference: [10] Hartman P.: On n-parameter families and interpolation problems for nonlinear ordinary differential equations.Trans. Amer. Math. Soc. 154 (1971), 201-266. Zbl 0222.34017, MR 0301277
Reference: [11] Henderson J., Jacson L.: Existence and uniquenes of solutions of k-point boundary value problems for ordinary differential equations.J.Diff.Eqs. 48 (1970), 373-385.
Reference: [12] Kiguradze I.T.: On a singular problem of Cauchy-Nicoletti.Ann. Mat. Pura Appl. 104 (1975), 151-175. Zbl 0307.34003, MR 0402157
Reference: [13] Kiguradze I.T.: Some Singular Boundary Value Problems for Ordinary Differential Equations.(Russian), Univ. Press Tbilisi, 1975. MR 0499402
Reference: [14] Kiguradze I.T.: Boundary problems for systems of ordinary differential equations.(Russian), Itogi nauki i tech., Sovr.pr.mat., 30, Moscow, 1987.
Reference: [15] Klaasen G.: Existence theorems for boundary value problems for n-th order ordinary differential equations.Rocky Mtn. J. Math. 3 (1973), 457-472. MR 0357944
Reference: [16] Lepina E., Lepin A.: Necessary and sufficient conditions for existence of a solution of a three-point BVP for a nonlinear third order differential equation.(Russian), Latv. Mat. Ežeg. 8 (1970), 149-154.
Reference: [17] Rachůnková I.: On some three-point problems for third-order differential equations.(preprint). Zbl 0759.34020, MR 1154059
Reference: [18] Vasiljev N.I., Klokov J.A.: Elements of the Theory of Boundary Value Problems for Ordinary Differential Equations.(Russian), Zinatne, Riga, 1978.
.

Files

Files Size Format View
ActaOlom_30-1991-1_7.pdf 1.186Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo