Previous |  Up |  Next

Article

Title: Periodic points for maps in $\Bbb R\sp n$ (English)
Author: Šnyrychová, Pavla
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 42
Issue: 1
Year: 2003
Pages: 87-104
.
Category: math
.
MSC: 37B99
MSC: 37C25
MSC: 37E05
MSC: 39B12
idZBL: Zbl 1121.37304
idMR: MR2056024
.
Date available: 2009-01-29T16:03:21Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/120466
.
Reference: [1] Andres J.: Period three implications for expansive maps in $\mathbb R$.J. Difference Eqns. Appl., to appear. MR 2033331
Reference: [2] Andres J., Jütner L., Pastor K.: On a multivalued version to the Sharkovskii theorem and its application to differential inclusions.II. Preprint (2002). MR 2036383
Reference: [3] Aleksandrov P., Pasynkov B.: Introduction to the Dimensional Theory.Nauka, Moscow, 1973 (in Russian). MR 0365524
Reference: [4] Brown R. F.: A Topological Introduction to Nonlinear Analysis.Birkhäuser, Boston, 1993. Zbl 0794.47034, MR 1232418
Reference: [5] Dugunji J., Granas A.: Fixed Points Theory.PWN, Warzsawa, 1982.
Reference: [6] Górniewicz L.: Topological Fixed Point Theory of Multivalued Mappings.Kluwer, Dordrecht, 1999. MR 1748378
Reference: [7] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Vol. I: Theory.Kluwer, Dordrecht, 1997. MR 1485775
Reference: [8] Kampen J.: On fixed points of maps and iterated maps and applications.Nonlinear Analysis 42 (2000), 509-532. Zbl 0967.37014, MR 1775390
Reference: [9] Kloeden P. E.: On Sharkovsky's cycle coexisting ordering.Bull. Austral. Math. Soc. 20 (1979), 171-177. MR 0557223
Reference: [10] Robinson C.: Dynamical Systems.CRC Press, London, 1995. Zbl 0853.58001, MR 1396532
Reference: [11] Schirmer H.: A Topologist’s View of Sharkovsky’s Theorem.Houston Journal of Mathematics 11, 3 (1985). Zbl 0606.54031, MR 0808654
Reference: [12] Shashkin, Yu. A.: Fixed Points.Amer. Math Soc., Providence, R.I., 1991. Zbl 0762.54034
Reference: [13] Zgliczynski P.: Sharkovskii theorem for multidimensional perturbations of onedimensional maps.II. Topol. Meth. Nonlin. Anal. 14, 1 (1999), 169-182. MR 1758885
.

Files

Files Size Format View
ActaOlom_42-2003-1_7.pdf 1.350Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo