Title:
|
On the control net of certain multivariate spline functions (English) |
Author:
|
Wenz, Hans-Jörg |
Language:
|
English |
Journal:
|
Acta Mathematica et Informatica Universitatis Ostraviensis |
ISSN:
|
1211-4774 |
Volume:
|
2 |
Issue:
|
1 |
Year:
|
1994 |
Pages:
|
113-(125) |
. |
Category:
|
math |
. |
MSC:
|
41A15 |
MSC:
|
41A63 |
MSC:
|
65D07 |
idZBL:
|
Zbl 0848.41008 |
idMR:
|
MR1309069 |
. |
Date available:
|
2009-01-30T09:01:45Z |
Last updated:
|
2013-10-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/120479 |
. |
Reference:
|
[1] De Boor C.: Splines as linear combinations of B-splines: A survey.in: Lorentz G. G., Chui C. K., Schumaker L. L., Hrsg., Approximation Theory II, Academic Press, New York, 1976, 1-47. Zbl 0343.41011, MR 0467092 |
Reference:
|
[2] De Boor C.: B-form basics.in: Farin G., Hrsg., Geometric Modeling, Algorithms and New Trends, SIAM, Philadelphia, 1987, 131-148. MR 0936450 |
Reference:
|
[3] Cohen E., Schumaker L. L.: Rates of convergence of control polygons.CAGD 2 (1985), 229-235. Zbl 0597.65003, MR 0828549 |
Reference:
|
[4] Curry H. B., Schoenberg I. J.: On Pólya frequency functions IV: The fundamental spline functions and their limits.J. Analyse Math. 17 (1966), 71-107. Zbl 0146.08404, MR 0218800, 10.1007/BF02788653 |
Reference:
|
[5] Dahmen W., Micchelli C.A., Seidel H.-P.: Blossoming begets B-spline bases built better by B-patches.Math. Comp. 59 (199) (1992), 97-115. MR 1134724 |
Reference:
|
[6] Fong P., Seidel H.-P.: An implementation of triangular B-splline surfaces over arbitrary triangulations.CAGD 10 (1993), 267-275. MR 1235157 |
Reference:
|
[7] Hollig K.: Multivariate splines.SIAM J. Numer. Anal. 19 (5) (1982), 1013-1031. MR 0672574, 10.1137/0719073 |
Reference:
|
[8] Micchelli C A.: A constructive approach to Kergin interpolation in $R^k$: Multivariate B-splines and Lagrange-interpolation.Rocky Mountain J. Math. 10(3) (1980), 485-497. MR 0590212, 10.1216/RMJ-1980-10-3-485 |
Reference:
|
[9] Seidel H.-P.: Symmetric recursive algorithms for surfaces: B-patches and the de Boor algorithm for polynomials over triangles.Const. Approx. 7 (1991), 257-279. Zbl 0733.41018, MR 1101066, 10.1007/BF01888157 |
Reference:
|
[10] Seidel H.-P.: Representing piecewise polynomials as linear combinations of multivariate B-splines.in: Lyche T., and Schumaker L. L., Mathematical methods in computer aided geometric design, II, Academic Press, Boston (1992), 559-566. MR 1172832 |
Reference:
|
[11] Walter W.: Analysis II.Springer Verlag, Berlin, 1990. Zbl 0705.26001 |
. |